IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2007i2p773-789.html
   My bibliography  Save this article

Missing data imputation, matching and other applications of random recursive partitioning

Author

Listed:
  • Iacus, Stefano M.
  • Porro, Giuseppe

Abstract

No abstract is available for this item.

Suggested Citation

  • Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
  • Handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:773-789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00513-5
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    4. Giuseppe Porro & Stefano Maria Iacus, 2009. "Random Recursive Partitioning: a matching method for the estimation of the average treatment effect," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 163-185.
    5. Smith, Jeffrey & Todd, Petra, 2005. "Rejoinder," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 365-375.
    6. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    7. Buttrey, Samuel E., 1998. "Nearest-neighbor classification with categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 157-169, August.
    8. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    9. Dehejia, Rajeev, 2005. "Practical propensity score matching: a reply to Smith and Todd," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 355-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    2. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    3. Ole Boysen and Alan Matthews, 2008. "Poverty Impacts of an Economic Partnership Agreement between Uganda and the EU," The Institute for International Integration Studies Discussion Paper Series iiisdp261, IIIS.
    4. Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
    5. Doove, L.L. & Van Buuren, S. & Dusseldorp, E., 2014. "Recursive partitioning for missing data imputation in the presence of interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 92-104.
    6. Natalia Estévez & Dominique Eich-Höchli & Michelle Dey & Gerhard Gmel & Joseph Studer & Meichun Mohler-Kuo, 2014. "Prevalence of and Associated Factors for Adult Attention Deficit Hyperactivity Disorder in Young Swiss Men," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    7. Claudio Conversano & Roberta Siciliano, 2009. "Incremental Tree-Based Missing Data Imputation with Lexicographic Ordering," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 361-379, December.
    8. Iacus, Stefano & Porro, Giuseppe, 2008. "Invariant and Metric Free Proximities for Data Matching: An R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i11).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:773-789. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.