Hybrid Multiple Imputation In A Large Scale Complex Survey
Author
Abstract
Suggested Citation
DOI: 10.21307/stattrans-2019-033
Download full text from publisher
References listed on IDEAS
- Paul D. Allison, 2000. "Multiple Imputation for Missing Data," Sociological Methods & Research, , vol. 28(3), pages 301-309, February.
- van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
- Olanrewaju Akande & Fan Li & Jerome Reiter, 2017. "An Empirical Comparison of Multiple Imputation Methods for Categorical Data," The American Statistician, Taylor & Francis Journals, vol. 71(2), pages 162-170, April.
- Doove, L.L. & Van Buuren, S. & Dusseldorp, E., 2014. "Recursive partitioning for missing data imputation in the presence of interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 92-104.
- Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
- Yajuan Si & Jerome P. Reiter, 2013. "Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 499-521, October.
- Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
- Eisele, Martin & Zhu, Junyi, 2013.
"Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions,"
EconStor Preprints
100007, ZBW - Leibniz Information Centre for Economics.
- Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
- Nonyane Bareng A. S. & Foulkes Andrea S., 2007. "Multiple Imputation and Random Forests (MIRF) for Unobservable, High-Dimensional Data," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-19, August.
- Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
- Horton N.J. & Lipsitz S.R. & Parzen M., 2003. "A Potential for Bias When Rounding in Multiple Imputation," The American Statistician, American Statistical Association, vol. 57, pages 229-232, November.
- Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
- Reiter, Jerome P. & Raghunathan, Trivellore E., 2007. "The Multiple Adaptations of Multiple Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1462-1471, December.
- Reiter, Jerome P. & Drechsler, Jörg, 2007. "Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality," IAB Discussion Paper 200720, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
- Iacus, Stefano & Porro, Giuseppe, 2008. "Invariant and Metric Free Proximities for Data Matching: An R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i11).
- Su, Yu-Sung & Gelman, Andrew & Hill, Jennifer & Yajima, Masanao, 2011. "Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i02).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Doove, L.L. & Van Buuren, S. & Dusseldorp, E., 2014. "Recursive partitioning for missing data imputation in the presence of interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 92-104.
- Jared S. Murray & Jerome P. Reiter, 2016. "Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1466-1479, October.
- Rashid, S. & Mitra, R. & Steele, R.J., 2015. "Using mixtures of t densities to make inferences in the presence of missing data with a small number of multiply imputed data sets," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 84-96.
- Daniel Manrique‐Vallier & Jingchen Hu, 2018. "Bayesian non‐parametric generation of fully synthetic multivariate categorical data in the presence of structural zeros," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 635-647, June.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
- Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
- Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
- Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019.
"Bayesian nonparametric sparse VAR models,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse VAR models," Papers 1608.02740, arXiv.org, revised Oct 2018.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- Griffin, J. E. & Steel, M. F. J., 2004.
"Semiparametric Bayesian inference for stochastic frontier models,"
Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
- Jim E. Griffin & Mark F.J. Steel, 2002. "Semiparametric Bayesian Inference for Stochastic Frontier Models," Econometrics 0209001, University Library of Munich, Germany, revised 18 Sep 2002.
- Stuart R. Lipsitz & Garrett M. Fitzmaurice & Roger D. Weiss, 2020. "Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 890-904, December.
- Fisher, Mark & Jensen, Mark J., 2019.
"Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 187-202.
- Mark Fisher & Mark J. Jensen, 2018. "Bayesian Inference and Prediction of a Multiple-Change-Point Panel Model with Nonparametric Priors," Working Paper series 18-12, Rimini Centre for Economic Analysis.
- Mark Fisher & Mark J. Jensen, 2018. "Bayesian Inference and Prediction of a Multiple-Change-Point Panel Model with Nonparametric Priors," FRB Atlanta Working Paper 2018-2, Federal Reserve Bank of Atlanta.
- Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
- Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52, November.
- Cheng, Xiaoyue & Cook, Dianne & Hofmann, Heike, 2015. "Visually Exploring Missing Values in Multivariable Data Using a Graphical User Interface," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i06).
- Youngjoo Cho & Debashis Ghosh, 0. "Quantile-Based Subgroup Identification for Randomized Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 0, pages 1-39.
- Hayes, Timothy & McArdle, John J., 2017. "Should we impute or should we weight? Examining the performance of two CART-based techniques for addressing missing data in small sample research with nonnormal variables," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 35-52.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exl:29stat:v:20:y:2019:i:4:p:33-58. See general information about how to correct material in RePEc.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (MPS Ltd.). General contact details of provider: https://www.exeley.com/journal/statistics_in_transition .
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
Please note that corrections may take a couple of weeks to filter through the various RePEc services.