IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Nonparametric Tests for Treatment Effect Heterogeneity

  • Richard K. Crump

    (Department of Economics, University of California, Berkeley)

  • V. Joseph Hotz

    (Department of Economics, Duke University, and NBER)

  • Guido W. Imbens

    (Department of Economics, Harvard University, and NBER)

  • Oscar A. Mitnik

    (Department of Economics, University of Miami, and IZA)

In this paper we develop two nonparametric tests of treatment effect heterogeneity. The first test is for the null hypothesis that the treatment has a zero average effect for all subpopulations defined by covariates. The second test is for the null hypothesis that the average effect conditional on the covariates is identical for all subpopulations, that is, that there is no heterogeneity in average treatment effects by covariates. We derive tests that are straightforward to implement and illustrate the use of these tests on data from two sets of experimental evaluations of the effects of welfare-to-work programs. Copyright by the President and Fellows of Harvard College and the Massachusetts Institute of Technology.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/rest.90.3.389
File Function: link to full text
Download Restriction: no

Article provided by MIT Press in its journal The Review of Economics and Statistics.

Volume (Year): 90 (2008)
Issue (Month): 3 (August)
Pages: 389-405

as
in new window

Handle: RePEc:tpr:restat:v:90:y:2008:i:3:p:389-405
Contact details of provider: Web page: http://mitpress.mit.edu/journals/

Order Information: Web: http://mitpress.mit.edu/journal-home.tcl?issn=00346535

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. V. Joseph Hotz & Guido W. Imbens & Julie H. Mortimer, 1999. "Predicting the Efficacy of Future Training Programs Using Past Experiences," NBER Technical Working Papers 0238, National Bureau of Economic Research, Inc.
  2. Sergio Firpo, 2004. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometric Society 2004 North American Summer Meetings 605, Econometric Society.
  3. Guido W. Imbens & Whitney Newey & Geert Ridder, 2005. "Mean-square-error Calculations for Average Treatment Effects," IEPR Working Papers 05.34, Institute of Economic Policy Research (IEPR).
  4. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
  5. Michael Lechner, 2005. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Labor and Demography 0505006, EconWPA.
  6. Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
  7. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-58, November.
  8. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
  9. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
  10. V. Joseph Hotz & Guido W. Imbens & Jacob A. Klerman, 2006. "Evaluating the Differential Effects of Alternative Welfare-to-Work Training Components: A Reanalysis of the California GAIN Program," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 521-566, July.
  11. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  12. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
  13. Hong, Yongmiao & White, Halbert, 1995. "Consistent Specification Testing via Nonparametric Series Regression," Econometrica, Econometric Society, vol. 63(5), pages 1133-59, September.
  14. Alberto Abadie & Joshua D. Angrist & Guido W. Imbens, 1998. "Instrumental Variables Estimation of Quantile Treatment Effects," NBER Technical Working Papers 0229, National Bureau of Economic Research, Inc.
  15. Heckman, James J & Ichimura, Hidehiko & Todd, Petra, 1998. "Matching as an Econometric Evaluation Estimator," Review of Economic Studies, Wiley Blackwell, vol. 65(2), pages 261-94, April.
  16. Xiaohong Chen & Han Hong & Alessandro Tarozzi, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Cowles Foundation Discussion Papers 1644, Cowles Foundation for Research in Economics, Yale University.
  17. Haerdle,Wolfgang & Marron,J., 1987. "Semiparametric comparision of regression curve," Discussion Paper Serie A 93, University of Bonn, Germany.
  18. Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," IZA Discussion Papers 2347, Institute for the Study of Labor (IZA).
  19. de Jong, R.M. & Bierens, H.J., 1994. "On the Limit Behavior of a Chi-Square Type Test if the Number of Conditional Moments Tested Approaches Infinity," Econometric Theory, Cambridge University Press, vol. 10(01), pages 70-90, March.
  20. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
  21. Hardle, W. & Mammen, E., 1990. "Comparing nonparametric versus parametric regression fits," CORE Discussion Papers 1990065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  22. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
  23. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, 01.
  24. Joseph Hotz, V. & Imbens, Guido W. & Mortimer, Julie H., 2005. "Predicting the efficacy of future training programs using past experiences at other locations," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 241-270.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:90:y:2008:i:3:p:389-405. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anna Pollock-Nelson)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.