IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1644.html
   My bibliography  Save this paper

Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects

Author

Listed:

Abstract

We study semiparametric efficiency bounds and efficient estimation of parameters defined through general nonlinear, possibly non-smooth and over-identified moment restrictions, where the sampling information consists of a primary sample and an auxiliary sample. The variables of interest in the moment conditions are not directly observable in the primary data set, but the primary data set contains proxy variables which are correlated with the variables of interest. The auxiliary data set contains information about the conditional distribution of the variables of interest given the proxy variables. Identification is achieved by the assumption that this conditional distribution is the same in both the primary and auxiliary data sets. We provide semiparametric efficiency bounds for both the "verify-out-of-sample" case, where the two samples are independent, and the "verify-in-sample" case, where the auxiliary sample is a subset of the primary sample; and the bounds are derived when the propensity score is unknown, or known, or belongs to a correctly specified parametric family. These efficiency variance bounds indicate that the propensity score is ancillary for the "verify-in-sample" case, but is not ancillary for the "verify-out-of-sample" case. We show that sieve conditional expectation projection based GMM estimators achieve the semiparametric efficiency bounds for all the above mentioned cases, and establish their asymptotic efficiency under mild regularity conditions. Although inverse probability weighting based GMM estimators are also shown to be semiparametrically efficient, they need stronger regularity conditions and clever combinations of nonparametric and parametric estimates of the propensity score to achieve the efficiency bounds for various cases. Our results contribute to the literature on non-classical measurement error models, missing data and treatment effects.

Suggested Citation

  • Xiaohong Chen & Han Hong & Alessandro Tarozzi, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Cowles Foundation Discussion Papers 1644, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1644
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d16/d1644.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    2. Ravallion, Martin, 1988. "Expected Poverty under Risk-Induced Welfare Variability," Economic Journal, Royal Economic Society, vol. 98(393), pages 1171-1182, December.
    3. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    4. Wang, Liqun, 1998. "Estimation of censored linear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 84(2), pages 383-400, June.
    5. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    6. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    7. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    9. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    10. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    11. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics,in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097 Elsevier.
    12. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    13. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    14. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    15. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    16. Bound, John, et al, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-368, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    2. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    3. Matias Busso & Patrick Kline, 2008. "Do Local Economic Development Programs Work? Evidence from the Federal Empowerment Zone Program," Cowles Foundation Discussion Papers 1639, Cowles Foundation for Research in Economics, Yale University.
    4. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 1053-1079.
    5. An, Yonghong & Hu, Yingyao, 2012. "Well-posedness of measurement error models for self-reported data," Journal of Econometrics, Elsevier, vol. 168(2), pages 259-269.
    6. Devereux, Paul J. & Tripathi, Gautam, 2009. "Optimally combining censored and uncensored datasets," Journal of Econometrics, Elsevier, vol. 151(1), pages 17-32, July.
    7. Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand," IZA Discussion Papers 2347, Institute for the Study of Labor (IZA).
    8. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    9. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    10. Bryan S. Graham & Keisuke Hirano, 2011. "Robustness to Parametric Assumptions in Missing Data Models," American Economic Review, American Economic Association, vol. 101(3), pages 538-543, May.
    11. Victor Chernozhukov & Roberto Rigobon & Thomas M. Stoker, 2010. "Set identification and sensitivity analysis with Tobin regressors," Quantitative Economics, Econometric Society, vol. 1(2), pages 255-277, November.
    12. Cañón Salazar Carlos Iván, 2016. "Distributional Policy Effects with Many Treatment Outcomes," Working Papers 2016-01, Banco de México.
    13. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    14. Rita Ginja, 2010. "Income Shocks and Investments in Human Capital," 2010 Meeting Papers 1165, Society for Economic Dynamics.
    15. Victor Chernozhukov & Roberto Rigobon & Thomas M. Stoker, 2009. "Set identification with Tobin regressors," CeMMAP working papers CWP12/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Rohman, Ibrahim Kholilul & Bohlin, Erik, 2011. "Towards the alternative measurement: Discovering the relationships between technology adoption and quality of life in Indonesia," 22nd European Regional ITS Conference, Budapest 2011: Innovative ICT Applications - Emerging Regulatory, Economic and Policy Issues 52206, International Telecommunications Society (ITS).
    17. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Auxiliary data; Measurement error; Missing data; Treatment effect; Semiparametric efficiency bound; GMM; Sieve estimation;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1644. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.