IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Well-posedness of measurement error models for self-reported data

  • Yonghong An

    (Institute for Fiscal Studies)

  • Yingyao Hu

    (Institute for Fiscal Studies and Johns Hopkins University)

It is widely admitted that the inverse problem of estimating the distribution of a latent variable X* from an observed sample of X, a contaminated measurement of X*, is ill-posed. This paper shows that measurement error models for self-reporting data are well-posed, assuming the probability of reporting truthfully is nonzero, which is an observed property in validation studies. This optimistic result suggests that one should not ignore the point mass at zero in the error distribution when modeling measurement errors in self-reported data. We also illustrate that the classical measurement error models may in fact be conditionally well-posed given prior information on the distribution of the latent variable X*. By both a Monte Carlo study and an empirical application, we show that failing to account for the property can lead to significant bias on estimation of distribution of X*.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cemmap.ifs.org.uk/wps/cwp3509.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP35/09.

as
in new window

Length:
Date of creation: Dec 2009
Date of revision:
Handle: RePEc:ifs:cemmap:35/09
Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
  2. Yingyao Hu & Geert Ridder, 2010. "On Deconvolution as a First Stage Nonparametric Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 29(4), pages 365-396.
  3. Xiaohong Chen & Markus Reiss, 2007. "On Rate Optimality for Ill-posed Inverse Problems in Econometrics," Cowles Foundation Discussion Papers 1626, Cowles Foundation for Research in Economics, Yale University.
  4. John Bound & Alan B. Krueger, 1989. "The Extent of Measurement Error In Longitudinal Earnings Data: Do Two Wrongs Make A Right?," NBER Working Papers 2885, National Bureau of Economic Research, Inc.
  5. Chen, Xiaohong & Hong, Han & Tarozzi, Alessandro, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Working Papers 42, Yale University, Department of Economics.
  6. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-94, July.
  7. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
  8. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  9. Hesse, C. H., 1995. "Deconvolving a Density from Partially Contaminated Observations," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 246-260, November.
  10. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
  11. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
  12. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
  13. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:35/09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benita Rajania)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.