IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/18-07.html
   My bibliography  Save this paper

Nonparametric identification and estimation of nonclassical errors-in-variables models without additional information

Author

Listed:
  • Xiaohong Chen

    () (Institute for Fiscal Studies and Yale University)

  • Yingyao Hu

    (Institute for Fiscal Studies and Johns Hopkins University)

  • Arthur Lewbel

    () (Institute for Fiscal Studies and Boston College)

Abstract

This paper considers identification and estimation of a nonparametric regression model with an unobserved discrete covariate. The sample consists of a dependent variable and a set of covariates, one of which is discrete and arbitrarily correlates with the unobserved covariate. The observed discrete covariate has the same support as the unobserved covariate, and can be interpreted as a proxy or mismeasure of the unobserved one, but with a nonclassical measurement error that has an unknown distribution. We obtain nonparametric identification of the model given monotonicity of the regression function and a rank condition that is directly testable given the data. Our identification strategy does not require additional sample information, such as instrumental variables or a secondary sample. We then estimate the model via the method of sieve maximum likelihood, and provide root-n asymptotic normality and semiparametric efficiency of smooth functionals of interest. Two small simulations are presented to illustrate the identification and the estimation results.

Suggested Citation

  • Xiaohong Chen & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric identification and estimation of nonclassical errors-in-variables models without additional information," CeMMAP working papers CWP18/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:18/07
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp1807.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    3. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
    4. Yingyao Hu & Susanne M. Schennach, 2006. "Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments," CeMMAP working papers CWP17/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Murphy, S. A. & Van Der Vaart, A. W., 1996. "Likelihood Inference in the Errors-in-Variables Model," Journal of Multivariate Analysis, Elsevier, vol. 59(1), pages 81-108, October.
    6. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    7. Cheng Hsiao, 1991. "Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data," Review of Economic Studies, Oxford University Press, vol. 58(4), pages 717-731.
    8. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    9. Geert Ridder & Yingyao Hu, 2004. "Estimation of Nonlinear Models with Measurement Error Using Marginal Information," Econometric Society 2004 North American Summer Meetings 21, Econometric Society.
    10. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    11. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
    12. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    13. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    14. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    15. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    16. Raymond J. Carroll & David Ruppert & Ciprian M. Crainiceanu & Tor D. Tosteson & Margaret R. Karagas, 2004. "Nonlinear and Nonparametric Regression and Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 736-750, January.
    17. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaohong & Hu, Yingyao & Lewbel, Arthur, 2008. "A note on the closed-form identification of regression models with a mismeasured binary regressor," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1473-1479, September.

    More about this item

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:18/07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.