IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Measurement Error Models with Auxiliary Data

  • Xiaohong Chen
  • Han Hong
  • Elie Tamer
Registered author(s):

    We study the problem of parameter inference in (possibly non-linear and non-smooth) econometric models when the data are measured with error. We allow for arbitrary correlation between the true variables and the measurement errors. To solve the identification problem, we require the existence of an auxiliary data-set that contains information about the conditional distribution of the true variables given the mismeasured variables. Our main assumption requires that the conditional distribution of the true variables given the mismeasured variables is the same in the primary and auxiliary data. Our methods allow the auxiliary data to be a validation sample, where the primary and validation data are from the same distribution, and more importantly, a stratified sample where the auxiliary data-set is not from the same distribution as the primary data. We also show how to combine the two data-sets to obtain a more efficient estimator of the parameter of interest. We establish the large sample properties of the sieve based estimators under verifiable conditions. In particular, we allow for the mismeasured variables to have unbounded supports without employing the tedious trimming scheme typically used in kernel based methods. We illustrate our methods by estimating a returns to schooling censored quantile regression using the CPS/SSR 1978 exact match files where the dependent variable is measured with error of arbitrary kind. Copyright 2005, Wiley-Blackwell.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1111/j.1467-937X.2005.00335.x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Oxford University Press in its journal The Review of Economic Studies.

    Volume (Year): 72 (2005)
    Issue (Month): 2 ()
    Pages: 343-366

    as
    in new window

    Handle: RePEc:oup:restud:v:72:y:2005:i:2:p:343-366
    Contact details of provider:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:72:y:2005:i:2:p:343-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.