IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nonparametric Identification of Regression Models Containing a Misclassified Dichotomous Regressor Without Instruments

  • Xiaohong Chen

    (Yale University)

  • Yingyao Hu

    (Johns Hopkins University)

  • Arthur Lewbel

    ()

    (Boston College)

This note considers nonparametric identification of a general nonlinear regression model with a dichotomous regressor subject to misclassification error. The available sample information consists of a dependent variable and a set of regressors, one of which is binary and error-ridden with misclassification error that has unknown distribution. Our identification strategy does not parameterize any regression or distribution functions, and does not require additional sample information such as instrumental variables, repeated measurements, or an auxiliary sample. Our main identifying assumption is that the regression model error has zero conditional third moment. The results include a closed-form solution for the unknown distributions and the regression function.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://fmwww.bc.edu/EC-P/wp675.pdf
File Function: main text
Download Restriction: no

Paper provided by Boston College Department of Economics in its series Boston College Working Papers in Economics with number 675.

as
in new window

Length: 15 pages
Date of creation: 31 Jul 2007
Date of revision:
Handle: RePEc:boc:bocoec:675
Contact details of provider: Postal: Boston College, 140 Commonwealth Avenue, Chestnut Hill MA 02467 USA
Phone: 617-552-3670
Fax: +1-617-552-2308
Web page: http://fmwww.bc.edu/EC/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
  2. Arthur Lewbel, 2003. "Estimation of Average Treatment Effects With Misclassification," Boston College Working Papers in Economics 556, Boston College Department of Economics, revised 04 Sep 2006.
  3. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
  4. Lewbel, Arthur, 2007. "A local generalized method of moments estimator," Economics Letters, Elsevier, vol. 94(1), pages 124-128, January.
  5. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, 05.
  6. Thomas J. Kane & Cecilia Elena Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," NBER Working Papers 7235, National Bureau of Economic Research, Inc.
  7. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
  8. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
  9. Hsiao, C., 1989. "Identification And Estimation Of Dichotomous Latent Variables Models Using Panel Data," Papers 8944, Tilburg - Center for Economic Research.
  10. Yingyao Hu & Susanne Schennach, 2006. "Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments," CeMMAP working papers CWP17/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  11. Geert Ridder & Yingyao Hu, 2004. "Estimation of Nonlinear Models with Measurement Error Using Marginal Information," Econometric Society 2004 North American Summer Meetings 21, Econometric Society.
  12. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
  13. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
  14. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
  15. Raymond J. Carroll & David Ruppert & Ciprian M. Crainiceanu & Tor D. Tosteson & Margaret R. Karagas, 2004. "Nonlinear and Nonparametric Regression and Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 736-750, January.
  16. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, 01.
  17. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
  18. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:675. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.