IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/675.html
   My bibliography  Save this paper

Nonparametric Identification of Regression Models Containing a Misclassified Dichotomous Regressor Without Instruments

Author

Listed:
  • Xiaohong Chen

    (Yale University)

  • Yingyao Hu

    (Johns Hopkins University)

  • Arthur Lewbel

    () (Boston College)

Abstract

This note considers nonparametric identification of a general nonlinear regression model with a dichotomous regressor subject to misclassification error. The available sample information consists of a dependent variable and a set of regressors, one of which is binary and error-ridden with misclassification error that has unknown distribution. Our identification strategy does not parameterize any regression or distribution functions, and does not require additional sample information such as instrumental variables, repeated measurements, or an auxiliary sample. Our main identifying assumption is that the regression model error has zero conditional third moment. The results include a closed-form solution for the unknown distributions and the regression function.

Suggested Citation

  • Xiaohong Chen & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric Identification of Regression Models Containing a Misclassified Dichotomous Regressor Without Instruments," Boston College Working Papers in Economics 675, Boston College Department of Economics.
  • Handle: RePEc:boc:bocoec:675
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp675.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hong, Han & Tamer, Elie, 2003. "A simple estimator for nonlinear error in variable models," Journal of Econometrics, Elsevier, vol. 117(1), pages 1-19, November.
    2. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    3. Thomas J. Kane & Cecilia Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    4. Lewbel, Arthur, 2007. "A local generalized method of moments estimator," Economics Letters, Elsevier, vol. 94(1), pages 124-128, January.
    5. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    6. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
    7. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    8. Yingyao Hu & Susanne M. Schennach, 2006. "Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments," CeMMAP working papers CWP17/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    10. Cheng Hsiao, 1991. "Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data," Review of Economic Studies, Oxford University Press, vol. 58(4), pages 717-731.
    11. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    12. Geert Ridder & Yingyao Hu, 2004. "Estimation of Nonlinear Models with Measurement Error Using Marginal Information," Econometric Society 2004 North American Summer Meetings 21, Econometric Society.
    13. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    14. Raymond J. Carroll & David Ruppert & Ciprian M. Crainiceanu & Tor D. Tosteson & Margaret R. Karagas, 2004. "Nonlinear and Nonparametric Regression and Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 736-750, January.
    15. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    16. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    17. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
    18. Hausman, J. A. & Abrevaya, Jason & Scott-Morton, F. M., 1998. "Misclassification of the dependent variable in a discrete-response setting," Journal of Econometrics, Elsevier, vol. 87(2), pages 239-269, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    2. Dong, Yingying & Lewbel, Arthur, 2011. "Nonparametric identification of a binary random factor in cross section data," Journal of Econometrics, Elsevier, vol. 163(2), pages 163-171, August.
    3. Liu, Yibin & Wu, Wenbin, 2017. "Closed-form estimation of a regression model with a mismeasured binary regressor and heteroskedasticity," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 202-206.
    4. Yingyao Hu & Arthur Lewbel, 2007. "Identifying the Returns to Lying When the Truth is Unobserved," Economics Working Paper Archive 540, The Johns Hopkins University,Department of Economics.
    5. Yingyao Hu & Arthur Lewbel, 2012. "Returns to Lying? Identifying the Effects of Misreporting When the Truth Is Unobserved," Frontiers of Economics in China, Higher Education Press, vol. 7(2), pages 163-192, June.
    6. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    7. van Hasselt, Martijn & Bollinger, Christopher R., 2012. "Binary misclassification and identification in regression models," Economics Letters, Elsevier, vol. 115(1), pages 81-84.
    8. repec:eee:econom:v:200:y:2017:i:2:p:207-222 is not listed on IDEAS
    9. Deng, Ping & Hu, Yingyao, 2009. "Bounding the effect of a dichotomous regressor with arbitrary measurement errors," Economics Letters, Elsevier, vol. 105(3), pages 256-260, December.

    More about this item

    Keywords

    misclassification error; identification; nonparametric regression;

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:675. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: http://edirc.repec.org/data/debocus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.