IDEAS home Printed from https://ideas.repec.org/p/iab/iabfme/201510(en).html
   My bibliography  Save this paper

Generalised partially linear regression with misclassied data and an application to labour market transitions

Author

Listed:
  • Dlugosz, Stephan

    (ZEW Mannheim)

  • Mammen, Enno

    (Institute for Applied Mathematics, Heidelberg)

  • Wilke, Ralf A.

    (Copenhagen Business School)

Abstract

"We consider the semiparametric generalised linear regression model which has mainstream empirical models such as the (partially) linear mean regression, logistic and multinomial regression as special cases. As an extension to related literature we allow a misclassified covariate to be interacted with a nonparametric function of a continuous covariate. This model is tailor- made to address known data quality issues of administrative labour market data. Using a sample of 20m observations from Germany we estimate the determinants of labour market transitions and illustrate the role of considerable misclassification in the educational status on estimated transition probabilities and marginal effects." (Author's abstract, IAB-Doku) ((en))

Suggested Citation

  • Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassied data and an application to labour market transitions," FDZ-Methodenreport 201510 (en), Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
  • Handle: RePEc:iab:iabfme:201510(en)
    as

    Download full text from publisher

    File URL: https://doku.iab.de/fdz/reporte/2015/MR_10-15_EN.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nina Westerheide & Goran Kauermann, 2014. "Unemployed in Germany: Factors Influencing the Risk of Losing the Job," Research in World Economy, Research in World Economy, Sciedu Press, vol. 5(2), pages 43-55, September.
    2. Manfred Antoni & Stefan Seth, 2012. "ALWA-ADIAB – Linked Individual Survey and Administrative Data for Substantive and Methodological Research," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 132(1), pages 141-146.
    3. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 343-366.
    4. Chen, Xiaohong & Hu, Yingyao & Lewbel, Arthur, 2008. "Nonparametric identification of regression models containing a misclassified dichotomous regressor without instruments," Economics Letters, Elsevier, vol. 100(3), pages 381-384, September.
    5. Thierry Magnac & Michael Visser, 1999. "Transition Models With Measurement Errors," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 466-474, August.
    6. repec:iab:iabfme:201112(en is not listed on IDEAS
    7. Kruppe, Thomas & Matthes, Britta & Unger, Stefanie, 2014. "Effectiveness of data correction rules in process-produced data : the case of educational attainment," IAB-Discussion Paper 201415, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    8. Laura Wichert & Ralf A. Wilke, 2012. "Which factors safeguard employment?: an analysis with misclassified German register data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 135-151, January.
    9. Hernandez, Monica & Pudney, Stephen, 2007. "Measurement error in models of welfare participation," Journal of Public Economics, Elsevier, vol. 91(1-2), pages 327-341, February.
    10. Bergemann, Annette & Mertens, Antje, 2000. "Job stability trends, layoffs and quits: An empirical analysis for West Germany," SFB 373 Discussion Papers 2001,102, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Manuel Arellano & Costas Meghir, 1992. "Female Labour Supply and On-the-Job Search: An Empirical Model Estimated Using Complementary Data Sets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(3), pages 537-559.
    12. Maddala, G S, 1971. "The Likelihood Approach to Pooling Cross-Section and Time-Series Data," Econometrica, Econometric Society, vol. 39(6), pages 939-953, November.
    13. Dlugosz, Stephan, 2011. "Give missings a chance: Combined stochastic and rule-based approach to improve regression models with mismeasured monotonic covariates without side information," ZEW Discussion Papers 11-013, ZEW - Leibniz Centre for European Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    2. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassified data and an application to labour market transitions," ZEW Discussion Papers 15-043, ZEW - Leibniz Centre for European Economic Research.
    3. repec:iab:iabfme:201510(en is not listed on IDEAS
    4. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    5. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    6. Devereux, Paul J. & Tripathi, Gautam, 2009. "Optimally combining censored and uncensored datasets," Journal of Econometrics, Elsevier, vol. 151(1), pages 17-32, July.
    7. Paul Sullivan, 2009. "Estimation of an Occupational Choice Model when Occupations are Misclassified," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    8. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    9. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "Identifying the effect of a mis-classified, binary, endogenous regressor," Papers 2011.07272, arXiv.org.
    10. DiTraglia, Francis J. & García-Jimeno, Camilo, 2019. "Identifying the effect of a mis-classified, binary, endogenous regressor," Journal of Econometrics, Elsevier, vol. 209(2), pages 376-390.
    11. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    12. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.
    13. Denis Heng Yan Leung & Ken Yamada & Biao Zhang, 2015. "Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 155-179, March.
    14. Hentschel, Jesko & Lanjouw, Jean Olson & Lanjouw, Peter & Poggi, Javier, 1998. "Combining census and survey data to study spatial dimensions of poverty," Policy Research Working Paper Series 1928, The World Bank.
    15. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 835-864.
    16. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    17. Erich Battistin & Raffaele Miniaci & Guglielmo Weber, 2003. "What Do We Learn from Recall Consumption Data?," Journal of Human Resources, University of Wisconsin Press, vol. 38(2).
    18. Daniel Aaronson & Bhashkar Mazumder, 2008. "Intergenerational Economic Mobility in the United States, 1940 to 2000," Journal of Human Resources, University of Wisconsin Press, vol. 43(1).
    19. Zenou, Yves & Boucher, Vincent & Tumen, Semih & Vlassopoulos, Michael & Wahba, Jackline, 2020. "Ethnic Mixing in Early Childhood: Evidence from a Randomized Field Experiment and a Structural Model," CEPR Discussion Papers 15528, C.E.P.R. Discussion Papers.
    20. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    21. Colnet Bénédicte & Josse Julie & Varoquaux Gaël & Scornet Erwan, 2022. "Causal effect on a target population: A sensitivity analysis to handle missing covariates," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 372-414, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iab:iabfme:201510(en). See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: IAB, Geschäftsbereich Wissenschaftliche Fachinformation und Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/iabfzde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.