IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Nonparametric Identification of a Binary Random Factor in Cross Section Data

  • Yingying Dong

    (California State University, Fullerton)

  • Arthur Lewbel


    (Boston College)

Suppose V and U are two independent mean zero random variables, where V has an asymmetric distribution with two mass points and U has a symmetric distribution. We show that the distributions of V and U are nonparametrically identified just from observing the sum V+U, and provide a rate root n estimator. We apply these results to the world income distribution to measure the extent of convergence over time, where the values V can take on correspond to country types, i.e., wealthy versus poor countries. We also extend our results to include covariates X, showing that we can nonparametrically identify and estimate cross section regression models of the form Y=g(X,D*)+U, where D* is an unobserved binary regressor.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Boston College Department of Economics in its series Boston College Working Papers in Economics with number 707.

in new window

Date of creation: 16 Jun 2009
Date of revision: 01 Jul 2010
Handle: RePEc:boc:bocoec:707
Contact details of provider: Postal: Boston College, 140 Commonwealth Avenue, Chestnut Hill MA 02467 USA
Phone: 617-552-3670
Fax: +1-617-552-2308
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dong, Yingying, 2011. "Semiparametric binary random effects models: Estimating two types of drinking behavior," Economics Letters, Elsevier, vol. 112(1), pages 79-81, July.
  2. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
  3. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
  4. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
  5. Yingyao Hu & Arthur Lewbel, 2008. "Identifying the returns to lying when the truth is unobserved," CeMMAP working papers CWP06/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  6. Xiaohong Chen & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric Identification of Regression Models Containing a Misclassified Dichotomous Regressor Without Instruments," Boston College Working Papers in Economics 675, Boston College Department of Economics.
  7. Joseph G. Altonji & Lewis M. Segal, 1994. "Small sample bias in GMM estimation of covariance structures," Working Paper Series, Macroeconomic Issues 94-8, Federal Reserve Bank of Chicago.
  8. Arthur Lewbel & Oliver Linton, 2003. "Nonparametric Matching and Efficient Estimators of Homothetically Separable Functions," Boston College Working Papers in Economics 585, Boston College Department of Economics, revised 04 Sep 2006.
  9. Hiroyuki Kasahara & Katsumi Shimotsu, 2007. "Nonparametric Identification and Estimation of Multivariate Mixtures," Working Papers 1153, Queen's University, Department of Economics.
  10. repec:cep:stiecm:/2003/450 is not listed on IDEAS
  11. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
  12. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
  13. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-60, November.
  14. Bianchi, Marco, 1997. "Testing for Convergence: Evidence from Non-parametric Multimodality Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(4), pages 393-409, July-Aug..
  15. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, 01.
  16. Lewbel, Arthur, 2007. "A local generalized method of moments estimator," Economics Letters, Elsevier, vol. 94(1), pages 124-128, January.
  17. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  18. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
  19. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:707. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.