IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Nonparametric estimation of distributions with categorical and continuous data

  • Li, Qi
  • Racine, Jeff

In this paper we consider the problem of estimating an unknown joint distribution which is defined over mixed discrete and continuous variables. A nonparametric kernel approach is proposed with smoothing parameters obtained from the cross-validated minimization of the estimator's integrated squared error. We derive the rate of convergence of the cross-validated smoothing parameters to their 'benchmark' optimal values, and we also establish the asymptotic normality of the resulting nonparametric kernel density estimator. Monte Carlo simulations illustrate that the proposed estimator performs substantially better than the conventional nonparametric frequency estimator in a range of settings. The simulations also demonstrate that the proposed approach does not suffer from known limitations of the likelihood cross-validation method which breaks down with commonly used kernels when the continuous variables are drawn from fat-tailed distributions. An empirical application demonstrates that the proposed method can yield superior predictions relative to commonly used parametric models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6WK9-48PVD0S-1/2/280f666392476617b7675313f6b1f3ab
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 86 (2003)
Issue (Month): 2 (August)
Pages: 266-292

as
in new window

Handle: RePEc:eee:jmvana:v:86:y:2003:i:2:p:266-292
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Grund, B. & Hall, P., 1993. "On the Performance of Kernel Estimators for High-Dimensional, Sparse Binary Data," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 321-344, February.
  2. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
  3. Grund, B., 1993. "Kernel Estimators for Cell Probabilities," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 283-308, August.
  4. Michael Gerfin, 1993. "Parametric and Semiparametric Estimation of the Binary Response Model of Labor Market Participation," Diskussionsschriften dp9315, Universitaet Bern, Departement Volkswirtschaft.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:86:y:2003:i:2:p:266-292. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.