IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Ill-posed inverse problems in economics

  • Joel Horowitz

    ()

    (Institute for Fiscal Studies and Northwestern University)

Registered author(s):

    A parameter of an econometric model is identified if there is a one-to-one or many-to-one mapping from the population distribution of the available data to the parameter. Often, this mapping is obtained by inverting a mapping from the parameter to the population distribution. If the inverse mapping is discontinuous, then estimation of the parameter usually presents an ill-posed inverse problem. Such problems arise in many settings in economics and other fields where the parameter of interest is a function. This paper explains how ill-posedness arises and why it causes problems for estimation. The need to modify or 'regularise' the identifying mapping is explained, and methods for regularisation and estimation are discussed. Methods for forming confidence intervals and testing hypotheses are summarised. It is shown that a hypothesis test can be more 'precise' in a certain sense than an estimator. An empirical example illustrates estimation in an ill-posed setting in economics.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.cemmap.ac.uk/wps/cwp371313.pdf
    Download Restriction: no

    Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP37/13.

    as
    in new window

    Length:
    Date of creation: Aug 2013
    Date of revision:
    Handle: RePEc:ifs:cemmap:37/13
    Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
    Phone: (+44) 020 7291 4800
    Fax: (+44) 020 7323 4780
    Web page: http://cemmap.ifs.org.uk
    Email:


    More information through EDIRC

    Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
    Email:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Nicolai Bissantz & Lutz Dümbgen & Hajo Holzmann & Axel Munk, 2007. "Non-parametric confidence bands in deconvolution density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 483-506.
    2. Stéphane Bonhomme & Jean-Marc Robin, 2008. "Generalized nonparametric deconvolution with an application to earnings dynamics," CeMMAP working papers CWP03/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Richard Blundell & Joel Horowitz, 2004. "A nonparametric test of exogeneity," CeMMAP working papers CWP15/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Hoderlein, Stefan & Holzmann, Hajo, 2011. "Demand Analysis As An Ill-Posed Inverse Problem With Semiparametric Specification," Econometric Theory, Cambridge University Press, vol. 27(03), pages 609-638, June.
    5. Horowitz, Joel L. & Lee, Sokbae, 2012. "Uniform confidence bands for functions estimated nonparametrically with instrumental variables," Journal of Econometrics, Elsevier, vol. 168(2), pages 175-188.
    6. Eric Gautier & Yuichi Kitamura, 2008. "Nonparametric Estimation in Random Coefficients Binary Choice Models," Working Papers 2008-15, Centre de Recherche en Economie et Statistique.
    7. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    8. Hausman, J.A. & Newey, W.K., 1992. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Working papers 93-2, Massachusetts Institute of Technology (MIT), Department of Economics.
    9. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, 03.
    10. Ivan Canay & Andres Santos & Azeem Shaikh, 2012. "On the testability of identification in some nonparametric models with endogeneity," CeMMAP working papers CWP18/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Joel Horowitz & Sokbae 'Simon' Lee, 2006. "Nonparametric instrumental variables estimation of a quantile regression model," CeMMAP working papers CWP09/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. DAROLLES, Serge & FLORENS, Jean-Pierre & RENAULT, Éric, 2002. "Nonparametric Instrumental Regression," Cahiers de recherche 2002-05, Universite de Montreal, Departement de sciences economiques.
    13. Hoderlein, Stefan & Klemelä, Jussi & Mammen, Enno, 2010. "Analyzing The Random Coefficient Model Nonparametrically," Econometric Theory, Cambridge University Press, vol. 26(03), pages 804-837, June.
    14. Haag, Berthold R. & Hoderlein, Stefan & Pendakur, Krishna, 2009. "Testing and imposing Slutsky symmetry in nonparametric demand systems," Journal of Econometrics, Elsevier, vol. 153(1), pages 33-50, November.
    15. Xiaohong Chen & Markus Reiss, 2007. "On Rate Optimality for Ill-posed Inverse Problems in Econometrics," Cowles Foundation Discussion Papers 1626, Cowles Foundation for Research in Economics, Yale University.
    16. Whitney Newey & James Powell & Francis Vella, 1998. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Working papers 98-16, Massachusetts Institute of Technology (MIT), Department of Economics.
    17. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, 01.
    18. Li, Tong & Hsiao, Cheng, 2004. "Robust estimation of generalized linear models with measurement errors," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 51-65.
    19. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, 01.
    20. Schennach, Susanne M., 2004. "Nonparametric Regression In The Presence Of Measurement Error," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1046-1093, December.
    21. Li, Tong & Perrigne, Isabelle & Vuong, Quang, 2000. "Conditionally independent private information in OCS wildcat auctions," Journal of Econometrics, Elsevier, vol. 98(1), pages 129-161, September.
    22. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    23. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
    24. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, 01.
    25. Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:37/13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benita Rajania)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.