IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/03-08.html
   My bibliography  Save this paper

Generalized nonparametric deconvolution with an application to earnings dynamics

Author

Listed:
  • Stéphane Bonhomme

    () (Institute for Fiscal Studies and University of Chicago)

  • Jean-Marc Robin

    () (Institute for Fiscal Studies and cemmap and Sciences Po)

Abstract

In this paper,we construct a nonparametric estimator of the distributions of latent factors in linear independent multi-factor models under the assumption that factor loadings are known. Our approach allows to estimate the distributions of up to L(L+1)/2 factors given L measurements. The estimator works through empirical characteristic functions. We show that it is consistent, and derive asymptotic convergence rates. Monte-Carlo simulations show good finite-sample performance, less so if distributions are highly skewed or leptokurtic. We finally apply the generalized deconvolution procedure to decompose individual log earnings from the PSID into permanent and transitory components.

Suggested Citation

  • Stéphane Bonhomme & Jean-Marc Robin, 2008. "Generalized nonparametric deconvolution with an application to earnings dynamics," CeMMAP working papers CWP03/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:03/08
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp308.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fatih Guvenen, 2009. "An Empirical Investigation of Labor Income Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 58-79, January.
    2. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
    3. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    4. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    5. Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
    6. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    7. Schennach, Susanne M., 2004. "Nonparametric Regression In The Presence Of Measurement Error," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1046-1093, December.
    8. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318 Elsevier.
    9. Hall, Robert E & Mishkin, Frederic S, 1982. "The Sensitivity of Consumption to Transitory Income: Estimates from Panel Data on Households," Econometrica, Econometric Society, vol. 50(2), pages 461-481, March.
    10. Fatih Guvenen, 2007. "Learning Your Earning: Are Labor Income Shocks Really Very Persistent?," American Economic Review, American Economic Association, vol. 97(3), pages 687-712, June.
    11. Geweke, John & Keane, Michael, 2000. "An empirical analysis of earnings dynamics among men in the PSID: 1968-1989," Journal of Econometrics, Elsevier, vol. 96(2), pages 293-356, June.
    12. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886.
    13. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
    14. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," Review of Economic Studies, Oxford University Press, vol. 63(1), pages 145-168.
    15. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    16. Brown, James N & Light, Audrey, 1992. "Interpreting Panel Data on Job Tenure," Journal of Labor Economics, University of Chicago Press, vol. 10(3), pages 219-257, July.
    17. Joel L. Horowitz & Marianthi Markatou, 1993. "Semiparametric Estimation Of Regression Models For Panel Data," Econometrics 9309001, EconWPA.
    18. Abowd, John M & Card, David, 1989. "On the Covariance Structure of Earnings and Hours Changes," Econometrica, Econometric Society, vol. 57(2), pages 411-445, March.
    19. Hall, Peter & Yao, Qiwei, 2003. "Inference in components of variance models with low replication," LSE Research Online Documents on Economics 17701, London School of Economics and Political Science, LSE Library.
    20. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    21. repec:adr:anecst:y:1999:i:55-56:p:08 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:03/08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.