IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v149y2009i1p12-25.html
   My bibliography  Save this article

Consistent noisy independent component analysis

Author

Listed:
  • Bonhomme, Stphane
  • Robin, Jean-Marc

Abstract

We study linear factor models under the assumptions that factors are mutually independent and independent of errors, and errors can be correlated to some extent. Under the factor non-Gaussianity, second-to-fourth-order moments are shown to yield full identification of the matrix of factor loadings. We develop a simple algorithm to estimate the matrix of factor loadings from these moments. We run Monte Carlo simulations and apply our methodology to data on cognitive test scores, and financial data on stock returns.

Suggested Citation

  • Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
  • Handle: RePEc:eee:econom:v:149:y:2009:i:1:p:12-25
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00030-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    3. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 491-533.
    6. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute of Labor Economics (IZA).
    7. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    8. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    9. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    10. Erickson, Timothy & Whited, Toni M., 2002. "Two-Step Gmm Estimation Of The Errors-In-Variables Model Using High-Order Moments," Econometric Theory, Cambridge University Press, vol. 18(3), pages 776-799, June.
    11. James J. Heckman & Jora Stixrud & Sergio Urzua, 2006. "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 411-482, July.
    12. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(2), pages 151-175, April.
    13. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    14. Pal, Manoranjan, 1980. "Consistent moment estimators of regression coefficients in the presence of errors in variables," Journal of Econometrics, Elsevier, vol. 14(3), pages 349-364, December.
    15. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    16. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    17. Yingyao Hu & Arthur Lewbel & Susanne M. Schennach, 2007. "Nonparametric identification of the classical errors-in-variables model without side information," CeMMAP working papers CWP14/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    19. John M. Barron & Mark C. Berger & Dan A. Black, 2006. "Selective Counteroffers," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 385-410, July.
    20. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    21. Ab Mooijaart, 1985. "Factor analysis for non-normal variables," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 323-342, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    2. Matteo Barigozzi & Alessio Moneta, 2016. "Identifying the Independent Sources of Consumption Variation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 420-449, March.
    3. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2013. "Nonparametric estimation of finite mixtures," Working Papers hal-00972868, HAL.
    4. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," Review of Economic Studies, Oxford University Press, vol. 79(3), pages 987-1020.
    5. Pogorletskiy, Alexander (Погорлецкий, Александр), 2016. "Changes in Beer Excise Tax Levying: Consequences for Budget and Regional Development (Case of St.Petersburg) [Изменения Во Взимании Акцизов На Пиво: Последствия Для Бюджета И Развития Региона (На П," Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 4, pages 115-130, August.
    6. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    7. Santiago Pereda-Fernández, 2017. "Social Spillovers in the Classroom: Identification, Estimation and Policy Analysis," Economica, London School of Economics and Political Science, vol. 84(336), pages 712-747, October.
    8. Jane Cooley Fruehwirth & Salvador Navarro & Yuya Takahashi, 2016. "How the Timing of Grade Retention Affects Outcomes: Identification and Estimation of Time-Varying Treatment Effects," Journal of Labor Economics, University of Chicago Press, vol. 34(4), pages 979-1021.
    9. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    10. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 491-533.
    11. Boudt, Kris & Cornilly, Dries & Verdonck, Tim, 2020. "Nearest comoment estimation with unobserved factors," Journal of Econometrics, Elsevier, vol. 217(2), pages 381-397.
    12. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    13. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    14. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Nonparametric estimation of finite measures," CeMMAP working papers CWP11/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Jari Miettinen & Katrin Illner & Klaus Nordhausen & Hannu Oja & Sara Taskinen & Fabian J. Theis, 2016. "Separation of Uncorrelated Stationary time series using Autocovariance Matrices," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 337-354, May.
    17. Ben-Moshe, Dan, 2018. "Identification Of Joint Distributions In Dependent Factor Models," Econometric Theory, Cambridge University Press, vol. 34(1), pages 134-165, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Moshe, Dan, 2018. "Identification Of Joint Distributions In Dependent Factor Models," Econometric Theory, Cambridge University Press, vol. 34(1), pages 134-165, February.
    2. Holly, S. & Petrella, I., 2008. "Factor demand linkages and the business cycle: Interpreting aggregate fluctuations as sectoral fluctuations," Cambridge Working Papers in Economics 0827, Faculty of Economics, University of Cambridge.
    3. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    4. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    5. Sarafidis, Vasilis & Yamagata, Takashi, 2010. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors under Cross-sectional Dependence," MPRA Paper 25182, University Library of Munich, Germany.
    6. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    7. Chen, Liang, 2012. "Identifying observed factors in approximate factor models: estimation and hypothesis testing," MPRA Paper 37514, University Library of Munich, Germany.
    8. Moscone, F. & Tosetti, E., 2010. "Testing for error cross section independence with an application to US health expenditure," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 283-291, September.
    9. Coën, Alain & Hübner, Georges, 2009. "Risk and performance estimation in hedge funds revisited: Evidence from errors in variables," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 112-125, January.
    10. Coen, Alain & Racicot, Francois-Eric, 2007. "Capital asset pricing models revisited: Evidence from errors in variables," Economics Letters, Elsevier, vol. 95(3), pages 443-450, June.
    11. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    12. Li, Kunpeng & Li, Qi & Lu, Lina, 2018. "Quasi maximum likelihood analysis of high dimensional constrained factor models," Journal of Econometrics, Elsevier, vol. 206(2), pages 574-612.
    13. Gregory Connor & Matthias Hagmann & Oliver Linton, 2007. "Efficient Estimation of a Semiparametric Characteristic- Based Factor Model of Security Returns," Swiss Finance Institute Research Paper Series 07-26, Swiss Finance Institute.
    14. Castagnetti, Carolina & Rossi, Eduardo, 2008. "Estimation methods in panel data models with observed and unobserved components: a Monte Carlo study," MPRA Paper 26196, University Library of Munich, Germany.
    15. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    16. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    17. Eickmeier, Sandra, 2005. "Common stationary and non-stationary factors in the euro area analyzed in a large-scale factor model," Discussion Paper Series 1: Economic Studies 2005,02, Deutsche Bundesbank.
    18. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    19. Erickson, Timothy & Jiang, Colin Huan & Whited, Toni M., 2014. "Minimum distance estimation of the errors-in-variables model using linear cumulant equations," Journal of Econometrics, Elsevier, vol. 183(2), pages 211-221.
    20. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.

    More about this item

    Keywords

    Independent Component Analysis Factor Analysis High-order moments Noisy ICA;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:149:y:2009:i:1:p:12-25. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.