IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/14-07.html

Nonparametric identification of the classical errors-in-variables model without side information

Author

Listed:
  • Yingyao Hu

    (Institute for Fiscal Studies and Johns Hopkins University)

  • Arthur Lewbel

    (Institute for Fiscal Studies and Boston College)

  • Susanne M. Schennach

    (Institute for Fiscal Studies and Brown University)

Abstract

This note establishes that the fully nonparametric classical errors-in-variables model is identifiable from data on the regressor and the dependent variable alone, unless the specification is a member of a very specific parametric family. This family includes the linear specification with normally distributed variables as a special case. This result relies on standard primitive regularity conditions taking the form of smoothness and monotonicity of the regression function and nonvanishing characteristic functions of the disturbances.

Suggested Citation

  • Yingyao Hu & Arthur Lewbel & Susanne M. Schennach, 2007. "Nonparametric identification of the classical errors-in-variables model without side information," CeMMAP working papers CWP14/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:14/07
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp1407.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    2. Andrea Neri & Roberta Zizza, 2010. "Income reporting behaviour in sample surveys," Temi di discussione (Economic working papers) 777, Bank of Italy, Economic Research and International Relations Area.

    More about this item

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:14/07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.