IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v85y2017ip1303-1320.html

Nonparametric Instrumental Variable Estimation Under Monotonicity

Author

Listed:
  • Denis Chetverikov
  • Daniel Wilhelm

Abstract

The ill‐posedness of the nonparametric instrumental variable (NPIV) model leads to estimators that may suffer from poor statistical performance. In this paper, we explore the possibility of imposing shape restrictions to improve the performance of the NPIV estimators. We assume that the function to be estimated is monotone and consider a sieve estimator that enforces this monotonicity constraint. We define a constrained measure of ill‐posedness that is relevant for the constrained estimator and show that, under a monotone IV assumption and certain other mild regularity conditions, this measure is bounded uniformly over the dimension of the sieve space. This finding is in stark contrast to the well‐known result that the unconstrained sieve measure of ill‐posedness that is relevant for the unconstrained estimator grows to infinity with the dimension of the sieve space. Based on this result, we derive a novel non‐asymptotic error bound for the constrained estimator. The bound gives a set of data‐generating processes for which the monotonicity constraint has a particularly strong regularization effect and considerably improves the performance of the estimator. The form of the bound implies that the regularization effect can be strong even in large samples and even if the function to be estimated is steep, particularly so if the NPIV model is severely ill‐posed. Our simulation study confirms these findings and reveals the potential for large performance gains from imposing the monotonicity constraint.

Suggested Citation

  • Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
  • Handle: RePEc:wly:emetrp:v:85:y:2017:i::p:1303-1320
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:85:y:2017:i::p:1303-1320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.