IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2017i128p261-295.html

Semiparametric Varying Coefficient Models with Endogenous Covariates

Author

Listed:
  • Samuele CENTORRINO
  • Jeffrey S. RACINE

Abstract

The semiparametric varying coefficient model is used in a wide range of applications. However, the traditional specification does not account for endogenous covariates, which restricts its application. In this paper we consider the estimation of semiparametric varying coefficient models when the functional coefficients may contain (continuous) endogenous covariates thereby extending the reach of this flexible and powerful model. We provide theoretical underpinnings, assess finite-sample performance via simulations, and showcase its practical appeal via an empirical application that examines the degree to which returns to education factor into the documented growing disparity between more and less educated workers.

Suggested Citation

  • Samuele CENTORRINO & Jeffrey S. RACINE, 2017. "Semiparametric Varying Coefficient Models with Endogenous Covariates," Annals of Economics and Statistics, GENES, issue 128, pages 261-295.
  • Handle: RePEc:adr:anecst:y:2017:i:128:p:261-295
    DOI: 10.15609/annaeconstat2009.128.0261
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/10.15609/annaeconstat2009.128.0261
    Download Restriction: no

    File URL: https://libkey.io/10.15609/annaeconstat2009.128.0261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
    2. Fernando Rios-Avila, 2019. "A Semi-Parametric Approach to the Oaxaca–Blinder Decomposition with Continuous Group Variable and Self-Selection," Econometrics, MDPI, vol. 7(2), pages 1-29, June.
    3. Samuele Centorrino & Jean-Pierre Florens & Jean-Michel Loubes, 2022. "Fairness constraint in Structural Econometrics and Application to fair estimation using Instrumental Variables," Papers 2202.08977, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • I26 - Health, Education, and Welfare - - Education - - - Returns to Education

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2017:i:128:p:261-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.