IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i03p522-545_00.html

Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator

Author

Listed:
  • Johannes, Jan
  • Van Bellegem, Sébastien
  • Vanhems, Anne

Abstract

This paper studies the estimation of a nonparametric function ϕ from the inverse problem r = Tϕ given estimates of the function r and of the linear transform T. We show that rates of convergence of the estimator are driven by two types of assumptions expressed in a single Hilbert scale. The two assumptions quantify the prior regularity of ϕ and the prior link existing between T and the Hilbert scale. The approach provides a unified framework that allows us to compare various sets of structural assumptions found in the econometric literature. Moreover, general upper bounds are also derived for the risk of the estimator of the structural function ϕ as well as that of its derivatives. It is shown that the bounds cover and extend known results given in the literature. Two important applications are also studied. The first is the blind nonparametric deconvolution on the real line, and the second is the estimation of the derivatives of the nonparametric instrumental regression function via an iterative Tikhonov regularization scheme.

Suggested Citation

  • Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(3), pages 522-545, June.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:03:p:522-545_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466610000393/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fève, Frédérique & Florens, Jean-Pierre, 2014. "Non parametric analysis of panel data models with endogenous variables," Journal of Econometrics, Elsevier, vol. 181(2), pages 151-164.
    2. Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," IDEI Working Papers 625, Institut d'Économie Industrielle (IDEI), Toulouse.
    3. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2025. "One-step smoothing splines instrumental regression," The Econometrics Journal, Royal Economic Society, vol. 28(2), pages 176-197.
    4. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers 34/15, Institute for Fiscal Studies.
    5. Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Consistent density deconvolution under partially known error distribution," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 236-241, February.
    6. Birke, M. & Van Bellegem, S. & Van Keilegom, I., 2014. "Semi-parametric estimation in a single-index model with endogenous variables," LIDAM Discussion Papers ISBA 2014043, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    8. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step nonparametric instrumental regression using smoothing splines," Working Papers hal-04971401, HAL.
    9. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    11. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2010. "Iterative Regularization in Nonparametric Instrumental Regression," TSE Working Papers 10-184, Toulouse School of Economics (TSE).
    13. Florens, Jean-Pierre & Van Bellegem, Sébastien, 2015. "Instrumental variable estimation in functional linear models," Journal of Econometrics, Elsevier, vol. 186(2), pages 465-476.
    14. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    15. Van Bellegem, Sébastien & Florens, Jean-Pierre, 2014. "Instrumental variable estimation in functional linear models," LIDAM Discussion Papers CORE 2014056, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:03:p:522-545_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.