IDEAS home Printed from
   My bibliography  Save this paper

Nonparametric Frontier Estimation from Noisy Data


  • Florens, Jean-Pierre
  • Schwarz, Maik
  • Van Bellegem, Sébastien


A new nonparametric estimator of production a frontier is defined and studied when the data set of production units is contaminated by measurement error. The measurement error is assumed to be an additive normal random variable on the input variable, but its variance is unknown. The estimator is a modification of the m-frontier, which necessitates the computation of a consistent estimator of the conditional survival function of the input variable given the output variable. In this paper, the identification and the consistency of a new estimator of the survival function is proved in the presence of additive noise with unknown variance. The performance of the estimator is also studied through simulated data.

Suggested Citation

  • Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," TSE Working Papers 10-179, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:22897

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
    2. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(03), pages 522-545, June.
    3. Alexandra Daskovska & Léopold Simar & Sébastien Bellegem, 2010. "Forecasting the Malmquist productivity index," Journal of Productivity Analysis, Springer, vol. 33(2), pages 97-107, April.
    4. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, Southern Economic Association, vol. 71(3), pages 636-660, January.
    5. Leleu, Herve, 2006. "A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models," European Journal of Operational Research, Elsevier, vol. 168(2), pages 340-344, January.
    6. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2012. "Regularization of nonparametric frontier estimators," Journal of Econometrics, Elsevier, vol. 168(2), pages 285-299.
    7. Winfried Pohlmeier & Luc Bauwens & David Veredas, 2007. "High frequency financial econometrics. Recent developments," ULB Institutional Repository 2013/136223, ULB -- Universite Libre de Bruxelles.
    8. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log-density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763.
    9. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    10. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    11. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    12. Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Consistent density deconvolution under partially known error distribution," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 236-241, February.
    13. Kneip, Alois & Park, Byeong U. & Simar, L opold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(06), pages 783-793, December.
    14. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    15. Bruno de Borger & Kristiaan Kerstens & Wim Moesen & Jacques Vanneste, 1994. "A non-parametric Free Disposal Hull (FDH) approach to technical efficiency: an illustration of radial and graph efficiency measures and some sensitivity results," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(IV), pages 647-667, December.
    16. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(06), pages 855-877, December.
    17. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dai, Xiaofeng, 2016. "Non-parametric efficiency estimation using Richardson–Lucy blind deconvolution," European Journal of Operational Research, Elsevier, vol. 248(2), pages 731-739.
    2. Leonardo Andrade Rocha & Ahmad Saeed Khan & Patrícia Verônica Pinheiro Sales Lima & Maria Ester Dal Poz & Fernando Porfirio Soares De Oliveira, 2016. "Corrupção, Burocracia E Outras Falhas Institucionais: O “Câncer” Da Inovação E Do Desenvolvimento," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 090, ANPEC - Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics].

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • P42 - Economic Systems - - Other Economic Systems - - - Productive Enterprises; Factor and Product Markets; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:22897. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.