IDEAS home Printed from
   My bibliography  Save this paper

Consistent Density Deconvolution under Partially Known Error Distribution


  • Schwarz, Maik
  • Van Bellegem, Sébastien


We estimate the distribution of a real-valued random variable from contaminated observations. The additive error is supposed to be normally distributed, but with unknown variance. The distribution is identifiable from the observations if we restrict the class of considered distributions by a simple condition in the time domain. A minimum distance estimator is shown to be consistent imposing only a slightly stronger assumption than the identification condition.

Suggested Citation

  • Schwarz, Maik & Van Bellegem, Sébastien, 2009. "Consistent Density Deconvolution under Partially Known Error Distribution," IDEI Working Papers 632, Institut d'Économie Industrielle (IDEI), Toulouse.
  • Handle: RePEc:ide:wpaper:23156

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Hall P. & Simar L., 2002. "Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 523-534, June.
    2. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(03), pages 522-545, June.
    3. Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
    4. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. D’Haultfœuille, Xavier & Février, Philippe, 2015. "Identification of mixture models using support variations," Journal of Econometrics, Elsevier, vol. 189(1), pages 70-82.
    2. Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," IDEI Working Papers 625, Institut d'Économie Industrielle (IDEI), Toulouse.
    3. Zhuan Pei & Yi Shen, 2017. "The Devil is in the Tails: Regression Discontinuity Design with Measurement Error in the Assignment Variable," Advances in Econometrics,in: Regression Discontinuity Designs, volume 38, pages 455-502 Emerald Publishing Ltd.
    4. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.

    More about this item


    deconvolution; error measurement; density estimation;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:23156. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.