IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2013-31.html
   My bibliography  Save this paper

Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution

Author

Listed:
  • Johanna Kappus

    () (Intitut für Mathematik-Universität Rostock)

  • Gwennaelle Mabon

    () (CREST and Université Paris-Descartes)

Abstract

A density deconvolution problem with unknown distribution of the errors is considered. To make the target density identifiable, one has to assume that some additional information on the noise is available. We consider two different models: the framework where some additional sample of the pure noise is available, as well as the repeated observation model, where the contaminated random variable of interest can be observed repeatedly. We introduce kernel estimators and present upper risk bounds. The focus of this work lies on the optimal data driven choice of the smoothing parameter using a penalization strategy

Suggested Citation

  • Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2013-31
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2013-31.pdf
    File Function: Crest working paper version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Neumann, Michael H., 2007. "Deconvolution from panel data with unknown error distribution," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1955-1968, November.
    2. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 491-533.
    3. Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
    4. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    5. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    6. F. Comte & C. Lacour, 2011. "Data‐driven density estimation in the presence of additive noise with unknown distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 601-627, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2013-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sri Srikandan). General contact details of provider: http://edirc.repec.org/data/crestfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.