IDEAS home Printed from
   My bibliography  Save this article

Bootstrap bandwidth selection in kernel density estimation from a contaminated sample


  • A. Delaigle
  • I. Gijbels


No abstract is available for this item.

Suggested Citation

  • A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
  • Handle: RePEc:spr:aistmt:v:56:y:2004:i:1:p:19-47
    DOI: 10.1007/BF02530523

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    2. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    3. Rachdi, Mustapha & Sabre, Rachid, 2000. "Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 105-114, April.
    4. Stefanski, Leonard A., 1990. "Rates of convergence of some estimators in a class of deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 9(3), pages 229-235, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:bla:stanee:v:71:y:2017:i:2:p:115-140 is not listed on IDEAS
    2. Wang, B. & Wertelecki, W., 2013. "Density estimation for data with rounding errors," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 4-12.
    3. Karun Adusumilli & Taisuke Otsu & Yoon-Jae Whang, 2017. "Inference on distribution functions under measurement error," STICERD - Econometrics Paper Series 594, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Julie McIntyre & Leonard Stefanski, 2011. "Density Estimation with Replicate Heteroscedastic Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 81-99, February.
    5. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    6. Fabienne Comte & Adeline Samson & Julien J Stirnemann, 2014. "Deconvolution Estimation of Onset of Pregnancy with Replicate Observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 325-345, June.
    7. Delaigle, A. & Gijbels, I., 2006. "Data-driven boundary estimation in deconvolution problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1965-1994, April.
    8. repec:bla:scjsta:v:44:y:2017:i:3:p:707-740 is not listed on IDEAS
    9. Gong, Xiaodong & Gao, Jiti, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," IZA Discussion Papers 9265, Institute for the Study of Labor (IZA).
    10. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    11. Johanna Kappus & Gwennaelle Mabon, 2013. "Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution," Working Papers 2013-31, Center for Research in Economics and Statistics.
    12. Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:56:y:2004:i:1:p:19-47. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.