IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.01761.html
   My bibliography  Save this paper

Non-parametric Quantile Regression and Uniform Inference with Unknown Error Distribution

Author

Listed:
  • Haoze Hou
  • Wei Huang
  • Zheng Zhang

Abstract

This paper studies the non-parametric estimation and uniform inference for the conditional quantile regression function (CQRF) with covariates exposed to measurement errors. We consider the case that the distribution of the measurement error is unknown and allowed to be either ordinary or super smooth. We estimate the density of the measurement error by the repeated measurements and propose the deconvolution kernel estimator for the CQRF. We derive the uniform Bahadur representation of the proposed estimator and construct the uniform confidence bands for the CQRF, uniformly in the sense for all covariates and a set of quantile indices, and establish the theoretical validity of the proposed inference. A data-driven approach for selecting the tuning parameter is also included. Monte Carlo simulations and a real data application demonstrate the usefulness of the proposed method.

Suggested Citation

  • Haoze Hou & Wei Huang & Zheng Zhang, 2025. "Non-parametric Quantile Regression and Uniform Inference with Unknown Error Distribution," Papers 2504.01761, arXiv.org.
  • Handle: RePEc:arx:papers:2504.01761
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.01761
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolai Bissantz & Lutz Dümbgen & Hajo Holzmann & Axel Munk, 2007. "Non‐parametric confidence bands in deconvolution density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 483-506, June.
    2. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    3. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    4. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    5. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Félix Camirand Lemyre & Raymond J. Carroll & Aurore Delaigle, 2022. "Semiparametric Estimation of the Distribution of Episodically Consumed Foods Measured With Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 469-481, January.
    8. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    9. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    10. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    11. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    12. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    13. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    14. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    15. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    16. Tao Zhang & Kengo Kato & David Ruppert, 2023. "Bootstrap Inference for Quantile-based Modal Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 122-134, January.
    17. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    18. Aurore Delaigle & Peter Hall & Farshid Jamshidi, 2015. "Confidence bands in non-parametric errors-in-variables regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 149-169, January.
    19. Fan, Jianqing & Masry, Elias, 1992. "Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 237-271, November.
    20. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    21. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    22. Firpo, Sergio & Galvao, Antonio F. & Song, Suyong, 2017. "Measurement errors in quantile regression models," Journal of Econometrics, Elsevier, vol. 198(1), pages 146-164.
    23. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    24. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    25. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1529-1564, October.
    26. Bert Van Es & Hae‐Won Uh, 2005. "Asymptotic Normality of Kernel‐Type Deconvolution Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 467-483, September.
    27. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1010-1043, August.
    28. Juned Siddique & Michael J. Daniels & Raymond J. Carroll & Trivellore E. Raghunathan & Elizabeth A. Stuart & Laurence S. Freedman, 2019. "Measurement error correction and sensitivity analysis in longitudinal dietary intervention studies using an external validation study," Biometrics, The International Biometric Society, vol. 75(3), pages 927-937, September.
    29. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    30. Chiang, Harold D. & Hsu, Yu-Chin & Sasaki, Yuya, 2019. "Robust uniform inference for quantile treatment effects in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 211(2), pages 589-618.
    31. Delaigle, Aurore & Hall, Peter, 2006. "On optimal kernel choice for deconvolution," Statistics & Probability Letters, Elsevier, vol. 76(15), pages 1594-1602, September.
    32. Wei, Ying & Carroll, Raymond J., 2009. "Quantile Regression With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1129-1143.
    33. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    34. Holger Dette & Stanislav Volgushev, 2008. "Non‐crossing non‐parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627, July.
    35. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    36. Härdle, Wolfgang K. & Song, Song, 2010. "Confidence Bands In Quantile Regression," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1180-1200, August.
    37. Delaigle, Aurore & Hall, Peter, 2008. "Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 280-287, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    2. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    3. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    4. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    5. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    6. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    7. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Inferences for Partially Conditional Quantile Treatment Effect Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202005, University of Kansas, Department of Economics, revised Feb 2020.
    8. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.
    10. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    11. Erich Battistin & Carlos Lamarche & Enrico Rettore, 2024. "Quantiles of the gain distribution of an early childhood intervention," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(6), pages 1045-1064, September.
    12. Adusumilli, Karun & Kurisu, Daisuke & Otsu, Taisuke & Whang, Yoon-Jae, 2020. "Inference on distribution functions under measurement error," Journal of Econometrics, Elsevier, vol. 215(1), pages 131-164.
    13. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2021. "A Nonparametric Test for Testing Heterogeneity in Conditional Quantile Treatment Effects," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202117, University of Kansas, Department of Economics, revised Aug 2021.
    14. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    15. Schennach, Susanne M., 2020. "Mismeasured and unobserved variables," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 487-565, Elsevier.
    16. Firpo, Sergio & Galvao, Antonio F. & Song, Suyong, 2017. "Measurement errors in quantile regression models," Journal of Econometrics, Elsevier, vol. 198(1), pages 146-164.
    17. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    18. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    19. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    20. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.01761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.