IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v26y2010i05p1529-1564_99.html
   My bibliography  Save this article

Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model

Author

Listed:
  • Kong, Efang
  • Linton, Oliver
  • Xia, Yingcun

Abstract

We use local polynomial fitting to estimate the nonparametric M-regression function for strongly mixing stationary processes {( Y , null )}. We establish a strong uniform consistency rate for the Bahadur representation of estimators of the regression function and its derivatives. These results are fundamental for statistical inference and for applications that involve plugging such estimators into other functionals where some control over higher order terms is required. We apply our results to the estimation of an additive M-regression model.

Suggested Citation

  • Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1529-1564, October.
  • Handle: RePEc:cup:etheor:v:26:y:2010:i:05:p:1529-1564_99
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466609990661
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    2. Linton, Oliver, 2001. "ESTIMATING ADDITIVE NONPARAMETRIC MODELS BY PARTIAL Lq NORM: THE CURSE OF FRACTIONALITY," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1037-1050, December.
    3. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    4. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    5. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    6. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    7. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    2. Shin Kanaya, 2015. "Uniform Convergence Rates of Kernel-Based Nonparametric Estimators for Continuous Time Diffusion Processes: A Damping Function Approach," CREATES Research Papers 2015-50, Department of Economics and Business Economics, Aarhus University.
    3. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP19/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(05), pages 1140-1177, October.
    5. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2013. "Global Bahadur Representation For Nonparametric Censored Regression Quantiles And Its Applications," Econometric Theory, Cambridge University Press, vol. 29(05), pages 941-968, October.
    6. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    7. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2013. "Estimating the Impact of Means-tested Subsidies under Treatment Externalities with Application to Anti-Malarial Bednets," CREATES Research Papers 2013-06, Department of Economics and Business Economics, Aarhus University.
    8. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    9. Härdle, Wolfgang K. & Song, Song, 2010. "Confidence Bands In Quantile Regression," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1180-1200, August.
    10. Härdle, Wolfgang Karl & Ritov, Ya’acov & Wang, Weining, 2015. "Tie the straps: Uniform bootstrap confidence bands for semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 129-145.
    11. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers CWP68/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Christou, Eliana & Akritas, Michael G., 2016. "Single index quantile regression for heteroscedastic data," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 169-182.
    13. Fan, Yanqin & Guerre, Emmanuel & Zhu, Dongming, 2017. "Partial identification of functionals of the joint distribution of “potential outcomes”," Journal of Econometrics, Elsevier, vol. 197(1), pages 42-59.
    14. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    15. Wolfgang Karl Härdle & Ya'acov Ritov & Weining Wang, 2013. "Tie the straps: uniform bootstrap confidence bands for bounded influence curve estimators," SFB 649 Discussion Papers SFB649DP2013-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    17. repec:spr:testjl:v:26:y:2017:i:2:d:10.1007_s11749-016-0508-0 is not listed on IDEAS
    18. Rothe, Christoph & Firpo, Sergio Pinheiro, 2013. "Semiparametric estimation and inference using doubly robust moment conditions," Textos para discussão 330, FGV/EESP - Escola de Economia de São Paulo, Getulio Vargas Foundation (Brazil).
    19. Marc Hallin & Zudi Lu & Davy Paindaveine & Miroslav Siman, 2012. "Local Constant and Local Bilinear Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2012-003, ULB -- Universite Libre de Bruxelles.
    20. Wolfgang Karl Härdle & Ya’acov Ritov & Song Song, 2010. "Partial Linear Quantile Regression and Bootstrap Confidence Bands," SFB 649 Discussion Papers SFB649DP2010-002, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    21. repec:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-016-0708-9 is not listed on IDEAS
    22. Gerard, Francois & Rokkanen, Miikka & Rothe, Christoph, 2015. "Identification and Inference in Regression Discontinuity Designs with a Manipulated Running Variable," IZA Discussion Papers 9604, Institute for the Study of Labor (IZA).
    23. Francesco Bravo & Ba M. Chu & David T. Jacho-Chávez, 2017. "Semiparametric estimation of moment condition models with weakly dependent data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 108-136, January.
    24. Song, Song & Ritov, Ya’acov & Härdle, Wolfgang K., 2012. "Bootstrap confidence bands and partial linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 244-262.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:26:y:2010:i:05:p:1529-1564_99. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.