IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i04p671-702_00.html

Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models

Author

Listed:
  • Koo, Bonsoo
  • Linton, Oliver

Abstract

We investigate a model in which we connect slowly time varying unconditional long-run volatility with short-run conditional volatility whose representation is given as a semi-strong GARCH(1,1) process with heavy tailed errors. We focus on robust estimation of both long-run and short-run volatilities. Our estimation is semiparametric since the long-run volatility is totally unspecified whereas the short-run conditional volatility is a parametric semi-strong GARCH(1,1) process. We propose different robust estimation methods for nonstationary and strictly stationary GARCH parameters with nonparametric long-run volatility function. Our estimation is based on a two-step LAD procedure. We establish the relevant asymptotic theory of the proposed estimators. Numerical results lend support to our theoretical results.

Suggested Citation

  • Koo, Bonsoo & Linton, Oliver, 2015. "Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models," Econometric Theory, Cambridge University Press, vol. 31(4), pages 671-702, August.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:671-702_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000516/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2024. "A new GARCH model with a deterministic time-varying intercept," Papers 2410.03239, arXiv.org, revised Oct 2024.
    2. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    3. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    4. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:04:p:671-702_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.