IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension

  • Lan Wang
  • Yichao Wu
  • Runze Li
Registered author(s):

    Ultra-high dimensional data often display heterogeneity due to either heteroscedastic variance or other forms of non-location-scale covariate effects. To accommodate heterogeneity, we advocate a more general interpretation of sparsity, which assumes that only a small number of covariates influence the conditional distribution of the response variable, given all candidate covariates; however, the sets of relevant covariates may differ when we consider different segments of the conditional distribution. In this framework, we investigate the methodology and theory of nonconvex, penalized quantile regression in ultra-high dimension. The proposed approach has two distinctive features: (1) It enables us to explore the entire conditional distribution of the response variable, given the ultra-high-dimensional covariates, and provides a more realistic picture of the sparsity pattern; (2) it requires substantially weaker conditions compared with alternative methods in the literature; thus, it greatly alleviates the difficulty of model checking in the ultra-high dimension. In theoretic development, it is challenging to deal with both the nonsmooth loss function and the nonconvex penalty function in ultra-high-dimensional parameter space. We introduce a novel, sufficient optimality condition that relies on a convex differencing representation of the penalized loss function and the subdifferential calculus. Exploring this optimality condition enables us to establish the oracle property for sparse quantile regression in the ultra-high dimension under relaxed conditions. The proposed method greatly enhances existing tools for ultra-high-dimensional data analysis. Monte Carlo simulations demonstrate the usefulness of the proposed procedure. The real data example we analyzed demonstrates that the new approach reveals substantially more information as compared with alternative methods. This article has online supplementary material.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1080/01621459.2012.656014
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 497 (March)
    Pages: 214-222

    as
    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:214-222
    Contact details of provider: Web page: http://www.tandfonline.com/UASA20

    Order Information: Web: http://www.tandfonline.com/pricing/journal/UASA20

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:214-222. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.