IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200703.html
   My bibliography  Save this paper

Nonparametric confidence bands in deconvolution density estimation

Author

Listed:
  • Bissantz, Nicolai
  • Dümbgen, Lutz
  • Holzmann, Hajo
  • Munk, Axel

Abstract

Uniform confidence bands for densities f via nonparametric kernel estimates were first constructed by Bickel and Rosenblatt [Ann. Statist. 1, 1071.1095]. In this paper this is extended to confidence bands in the deconvolution problem g = f for an ordinary smooth error density . Under certain regularity conditions, we obtain asymptotic uniform confidence bands based on the asymptotic distribution of the maximal deviation (LÉ-distance) between a deconvolution kernel estimator . f and f. Further consistency of the simple nonparametric bootstrap is proved. For our theoretical developments the bias is simply corrected by choosing an undersmoothing bandwidth. For practical purposes we propose a new data-driven bandwidth selector based on heuristic arguments, which aims

Suggested Citation

  • Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200703
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/36581/1/600069613.PDF
    Download Restriction: no

    References listed on IDEAS

    as
    1. Politis, Dimitris N. & Romano, Joseph P., 1999. "Multivariate Density Estimation with General Flat-Top Kernels of Infinite Order," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 1-25, January.
    2. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    3. Bert Van Es & Hae-Won Uh, 2005. "Asymptotic Normality of Kernel-Type Deconvolution Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 467-483.
    4. Härdle, Wolfgang, 1989. "Asymptotic maximal deviation of M-smoothers," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 163-179, May.
    5. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886.
    6. Delaigle, A. & Gijbels, I., 2001. "Bootstrap Bandwidth Selection in Kernel Density Estimation from a Contaminated Sample," Papers 0116, Catholique de Louvain - Institut de statistique.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bissantz, Nicolai & Holzmann, Hajo & Proksch, Katharina, 2014. "Confidence regions for images observed under the Radon transform," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 86-107.
    2. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Katharina Proksch, 2016. "On confidence bands for multivariate nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 209-236, February.
    4. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Härdle, 2014. "Confidence Corridors for Multivariate Generalized Quantile Regression," SFB 649 Discussion Papers SFB649DP2014-028, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Wang, Xiao-Feng & Fan, Zhaozhi & Wang, Bin, 2010. "Estimating smooth distribution function in the presence of heteroscedastic measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 25-36, January.
    6. Katharina Proksch, 2016. "On confidence bands for multivariate nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 209-236, February.
    7. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Anti-concentration and honest, adaptive confidence bands," CeMMAP working papers CWP69/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Bissantz, Nicolai & Birke, Melanie, 2009. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2364-2375, November.
    9. Birke, Melanie & Bissantz, Nicolai & Holzmann, Hajo, 2008. "Confidence bands for inverse regression models with application to gel electrophoresis," Technical Reports 2008,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200703. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/isdorde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.