IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Semiparametric Deconvolution with Unknown Error Variance

Deconvolution is a useful statistical technique for recovering an unknown density in the presence of measurement error. Typically, the method hinges on stringent assumptions about teh nature of the measurement error, more specifically, that the distribution is *entirely* known. We relax this assumption in the context of a regression error component model and develop an estimator for the unkinown density. We show semi-uniform consistency of the estimator and provide Monte Carlo evidence that demonstrates the merits of the method.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Center for Policy Research, Maxwell School, Syracuse University in its series Center for Policy Research Working Papers with number 104.

in new window

Length: 23 pages
Date of creation: Apr 2008
Date of revision:
Handle: RePEc:max:cprwps:104
Contact details of provider: Postal: 426 Eggers Hall, Syracuse, New York USA 13244-1020
Phone: (315) 443-3114
Fax: (315) 443-1081
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Wei Wang & Christine Amsler & Peter Schmidt, 2011. "Goodness of fit tests in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 95-118, April.
  2. Fabien Postel-Vinay & Jean-Marc Robin, 2002. "The Distribution of Earnings in an Equilibrium Search Model with State-Dependent Offers and Counteroffers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(4), pages 989-1016, November.
  3. Wei Siang Wang & Peter Schmidt, 2007. "On The Distribution of Estimated Technical Efficiency in Stochastic Frontier Models," CEPA Working Papers Series WP022007, School of Economics, University of Queensland, Australia.
  4. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  5. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886.
  6. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
  7. Li, Tong & Perrigne, Isabelle & Vuong, Quang, 2000. "Conditionally independent private information in OCS wildcat auctions," Journal of Econometrics, Elsevier, vol. 98(1), pages 129-161, September.
  8. Peter Hall & Peihua Qiu, 2005. "Discrete-transform approach to deconvolution problems," Biometrika, Biometrika Trust, vol. 92(1), pages 135-148, March.
  9. Joel L. Horowitz & Marianthi Markatou, 1993. "Semiparametric Estimation Of Regression Models For Panel Data," Econometrics 9309001, EconWPA.
  10. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
  11. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  12. Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46.
  13. Horowitz, Joel L & Markatou, Marianthi, 1996. "Semiparametric Estimation of Regression Models for Panel Data," Review of Economic Studies, Wiley Blackwell, vol. 63(1), pages 145-68, January.
  14. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  15. Shunpu Zhang & Rohana Karunamuni, 2000. "Boundary Bias Correction for Nonparametric Deconvolution," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(4), pages 612-629, December.
  16. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer, vol. 56(1), pages 19-47, March.
  17. Elena Krasnokutskaya, 2004. "Identification and Estimation in Highway Procurement Auctions under Unobserved Auction Heterogeneity," PIER Working Paper Archive 05-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  18. C. Lanier Benkard & Patrick Bajari, 2005. "Hedonic Price Indexes With Unobserved Product Characteristics, and Application to Personal Computers," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 61-75, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:max:cprwps:104. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kelly Bogart)

or (Katrina Wingle)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.