IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v263y2017i3p1078-1094.html
   My bibliography  Save this article

Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies

Author

Listed:
  • Anaya, Karim L.
  • Pollitt, Michael G.

Abstract

This paper analyses the influence of weather variables on the efficiency of electricity distribution companies in Argentina, Brazil, Chile and Peru, covering 82 firms which represent more than 90 percent of the distribution market of energy delivered for the period 1998–2008. Stochastic frontier analysis (SFA) is applied using a translog input distance function. Two different approaches are evaluated: weather in the production function and weather in the inefficiency term. The efficacy of one over the other is determined using nested models. Weather data are collected from meteorological stations (429) and NASA (3423 coordinates). A geographic information system (GIS) is used for locating the firms’ service areas and their weather conditions. A combination of cost only and cost-quality models is proposed. For cost only models, the results suggest that on average there is a significant increase in measured efficiency when weather is incorporated in the production function. Under the cost-quality models, on average the effect of weather is much lower. This suggests that firms have internalised the effects of weather and have adapted their networks to the environment in which they operate. A company-level analysis indicates that across models a significant number of companies are affected by weather. Regulators are advised to make proper adjustments of efficiency scores when specific firms face important efficiency changes due to weather.

Suggested Citation

  • Anaya, Karim L. & Pollitt, Michael G., 2017. "Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1078-1094.
  • Handle: RePEc:eee:ejores:v:263:y:2017:i:3:p:1078-1094
    DOI: 10.1016/j.ejor.2017.05.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717305192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.05.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980, October.
    2. Lee, Young Hoon, 2010. "Group-specific stochastic production frontier models with parametric specifications," European Journal of Operational Research, Elsevier, vol. 200(2), pages 508-517, January.
    3. Jamasb, Tooraj & Orea, Luis & Pollitt, Michael, 2012. "Estimating the marginal cost of quality improvements: The case of the UK electricity distribution companies," Energy Economics, Elsevier, vol. 34(5), pages 1498-1506.
    4. Sun, Kai & Kumbhakar, Subal C. & Tveterås, Ragnar, 2015. "Productivity and efficiency estimation: A semiparametric stochastic cost frontier approach," European Journal of Operational Research, Elsevier, vol. 245(1), pages 194-202.
    5. Antonio Estache & MartÌn A. Rossi & Christian A. Ruzzier, 2004. "The Case for International Coordination of Electricity Regulation: Evidence from the Measurement of Efficiency in South America," Journal of Regulatory Economics, Springer, vol. 25(3), pages 271-295, May.
    6. Evangelia Desli & Subhash Ray & Subal Kumbhakar, 2003. "A dynamic stochastic frontier production model with time-varying efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 623-626.
    7. P. Nillesen & M. Pollitt, 2010. "Using Regulatory Benchmarking Techniques to Set Company Performance Targets: The Case of Us Electricity," Competition and Regulation in Network Industries, Intersentia, vol. 11(1), pages 50-85, March.
    8. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    9. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    10. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    11. Tim Coelli & Antonio Estache & Sergio Perelman & Lourdes Trujillo, 2003. "A Primer on Efficiency Measurement for Utilities and Transport Regulators," World Bank Publications - Books, The World Bank Group, number 15149, September.
    12. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    13. Giannakis, Dimitrios & Jamasb, Tooraj & Pollitt, Michael, 2005. "Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution networks," Energy Policy, Elsevier, vol. 33(17), pages 2256-2271, November.
    14. Zhang, Rui & Sun, Kai & Delgado, Michael S. & Kumbhakar, Subal C., 2012. "Productivity in China's high technology industry: Regional heterogeneity and R&D," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 127-141.
    15. World Bank, 2008. "Benchmarking Analysis of the Electricity Distribution Sector in the Latin American and Caribbean Region," World Bank Publications - Reports 12675, The World Bank Group.
    16. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    17. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    18. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    19. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2012. "Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 34(2), pages 542-548.
    20. Kumbhakar, Subal C., 2013. "Specification and estimation of multiple output technologies: A primal approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 465-473.
    21. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    22. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2014. "Using the latent class approach to cluster firms in benchmarking: An application to the US electricity transmission industry," Operations Research Perspectives, Elsevier, vol. 1(1), pages 6-17.
    23. Sun, Kai & Kumbhakar, Subal C., 2013. "Semiparametric smooth-coefficient stochastic frontier model," Economics Letters, Elsevier, vol. 120(2), pages 305-309.
    24. William Yu & Tooraj Jamasb & Michael Pollitt, 2009. "Willingness-to-Pay for Quality of Service: An Application to Efficiency Analysis of the UK Electricity Distribution Utilities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-48.
    25. Tim Coelli & Sergio Perelman & Elliot Romano, 1999. "Accounting for Environmental Influences in Stochastic Frontier Models: With Application to International Airlines," Journal of Productivity Analysis, Springer, vol. 11(3), pages 251-273, June.
    26. Tovar, Beatriz & Javier Ramos-Real, Francisco & de Almeida, Edmar Fagundes, 2011. "Firm size and productivity. Evidence from the electricity distribution industry in Brazil," Energy Policy, Elsevier, vol. 39(2), pages 826-833, February.
    27. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    28. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    29. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    30. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    31. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    32. Pekka Korhonen & Mikko Syrjänen, 2003. "Evaluation of Cost Efficiency in Finnish Electricity Distribution," Annals of Operations Research, Springer, vol. 121(1), pages 105-122, July.
    33. V L Miguéis & A S Camanho & E Bjørndal & M Bjørndal, 2012. "Productivity change and innovation in Norwegian electricity distribution companies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 982-990, July.
    34. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    35. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamasb, Tooraj & Llorca, Manuel & Khetrapal, Pavan & Thakur, Tripta, 2021. "Institutions and performance of regulated firms: Evidence from electricity distribution in India," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 68-82.
    2. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    3. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    4. Paul, Satya & Shankar, Sriram, 2018. "On estimating efficiency effects in a stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 271(2), pages 769-774.
    5. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    6. Chen, Hao & Chen, Xi & Niu, Jinye & Xiang, Mengyu & He, Weijun & Küfeoğlu, Sinan, 2021. "Estimating the marginal cost of reducing power outage durations in China: A parametric distance function approach," Energy Policy, Elsevier, vol. 155(C).
    7. Lamees Al-Durgham & Mohammad Adeinat, 2020. "Efficiency of Listed Manufacturing Firms in Jordan: A Stochastic Frontier Analysis," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 5-9.
    8. Lin, Winston T. & Chen, Yueh H. & Hung, TingShu, 2019. "A partial adjustment valuation approach with stochastic and dynamic speeds of partial adjustment to measuring and evaluating the business value of information technology," European Journal of Operational Research, Elsevier, vol. 272(2), pages 766-779.
    9. Shamsuzzoha & Makoto Tanaka, 2021. "The role of human capital on the performance of manufacturing firms in Bangladesh," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(1), pages 21-33, January.
    10. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim L. Anaya & Michael G. Pollitt, 2014. "Does Weather Have an Impact on Electricity Distribution Efficiency? Evidence from South America," Working Papers EPRG 1404, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    3. Deng, Na-Qian & Liu, Li-Qiu & Deng, Ying-Zhi, 2018. "Estimating the effects of restructuring on the technical and service-quality efficiency of electricity companies in China," Utilities Policy, Elsevier, vol. 50(C), pages 91-100.
    4. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    5. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    6. Saastamoinen, Antti & Kuosmanen, Timo, 2016. "Quality frontier of electricity distribution: Supply security, best practices, and underground cabling in Finland," Energy Economics, Elsevier, vol. 53(C), pages 281-292.
    7. Christian Growitsch & Tooraj Jamasb & Michael Pollitt, 2009. "Quality of service, efficiency and scale in network industries: an analysis of European electricity distribution," Applied Economics, Taylor & Francis Journals, vol. 41(20), pages 2555-2570.
    8. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2014. "Using the latent class approach to cluster firms in benchmarking: An application to the US electricity transmission industry," Operations Research Perspectives, Elsevier, vol. 1(1), pages 6-17.
    9. Nieswand, Maria & Seifert, Stefan, 2018. "Environmental factors in frontier estimation – A Monte Carlo analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 133-148.
    10. Galán, Jorge E. & Pollitt, Michael G., 2014. "Inefficiency persistence and heterogeneity in Colombian electricity utilities," Energy Economics, Elsevier, vol. 46(C), pages 31-44.
    11. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    12. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    13. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    14. Jamasb, Tooraj & Llorca, Manuel & Khetrapal, Pavan & Thakur, Tripta, 2021. "Institutions and performance of regulated firms: Evidence from electricity distribution in India," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 68-82.
    15. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    16. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Cambridge Working Papers in Economics 1423, Faculty of Economics, University of Cambridge.
    17. Baležentis, Tomas & Sun, Kai, 2020. "Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of Lithuanian dairy farms," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1174-1188.
    18. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    19. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    20. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:263:y:2017:i:3:p:1078-1094. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.