IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Efficiency Effects of Quality of Service and Environmental Factors: Experience from Norwegian Electricity Distribution

  • Growitsch, C.
  • Jamasb, T.
  • Wetzel, H.

Since the 1990s, efficiency and benchmarking analysis has increasingly been used in network utilities research and regulation. A recurrent concern is the effect of environmental factors that are beyond the influence of firms (observable heterogeneity) and factors that are not identifiable (unobserved heterogeneity) on measured cost and quality performance of firms. This paper analyses the effect of geographic and weather factors and unobserved heterogeneity on a set of 128 Norwegian electricity distribution utilities for the 2001-2004 period. We utilize data on almost 100 geographic and weather variables to identify real economic inefficiency while controlling for observable and unobserved heterogeneity. We use the factor analysis technique to reduce the number of environmental factors into few composite variables and to avoid the problem of multi-collinearity. We then estimate the established stochastic frontier models of Battese and Coelli (1992; 1995) and the recent true fixed effects models of Greene (2004; 2005) without and with environmental variables. In the former models some composite environmental variables have a significant effect on the performance of utilities. These effects vanish in the true fixed effects models. However, the latter models capture the entire unobserved heterogeneity and therefore show significantly higher average efficiency scores.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.cam.ac.uk/research/repec/cam/pdf/cwpe1050.pdf
Download Restriction: no

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 1050.

as
in new window

Length:
Date of creation: 01 Oct 2010
Date of revision:
Handle: RePEc:cam:camdae:1050
Contact details of provider: Web page: http://www.econ.cam.ac.uk/index.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  2. Mehdi Farsi & Massimo Filippini & William Greene, 2005. "Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies," Journal of Regulatory Economics, Springer, vol. 28(1), pages 69-90, 07.
  3. Yang, H. & Pollitt, M., 2007. "Incorporating Both Undesirable Outputs and Uncontrollable Variables into DEA: the Performance of Chinese Coal-Fired Power Plants," Cambridge Working Papers in Economics 0733, Faculty of Economics, University of Cambridge.
  4. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
  5. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
  6. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2004. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," CEPE Working paper series 04-33, CEPE Center for Energy Policy and Economics, ETH Zurich.
  7. Leland Gerson Neuberg, 1977. "Two Issues in the Municipal Ownership of Electric Power Distribution," Bell Journal of Economics, The RAND Corporation, vol. 8(1), pages 303-323, Spring.
  8. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
  9. Torstein Bye & Einar Hope, 2005. "Deregulation of electricity markets : The Norwegian experience," Discussion Papers 433, Statistics Norway, Research Department.
  10. William Greene, 2002. "Fixed and Random Effects in Stochastic Frontier Models," Working Papers 02-16, New York University, Leonard N. Stern School of Business, Department of Economics.
  11. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980.
  12. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  13. Jamasb, T. & Pollitt, M., 2000. "Benchmarking and regulation: international electricity experience," Utilities Policy, Elsevier, vol. 9(3), pages 107-130, September.
  14. Mehdi Farsi & Massimo Filippini, 2006. "An Analysis of Efficiency and Productivity in Swiss Hospitals," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 142(I), pages 1-37, March.
  15. Førsund, Finn R. & Kittelsen, Sverre A. C., 1998. "Productivity development of Norwegian electricity distribution utilities," Resource and Energy Economics, Elsevier, vol. 20(3), pages 207-224, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1050. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.