IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/eprg1404.html
   My bibliography  Save this paper

Does Weather Have an Impact on Electricity Distribution Efficiency? Evidence from South America

Author

Listed:
  • Karim L. Anaya

    (Energy Policy Research Group, Judge Business School, University of Cambridge)

  • Michael G. Pollitt

    (Energy Policy Research Group, Judge Business School, University of Cambridge)

Abstract

This paper analyses the influence of weather variables on the efficiency of electricity distribution utilities in Argentina, Brazil, Chile and Peru. The data covers 82 firms that operate in the previously mentioned countries which represent more than 90 per cent of the distribution market of energy delivered for the period 1998-2008. The stochastic frontier analysis (SFA) is applied with a translog input distance function approach. A combination of cost and cost-quality models is proposed to create better discussions. Weather data are collected from 429 meteorological stations and lightning data (flash rate) are collected from 3,423 coordinates provided by NASA. A geographic information system (GIS) is used for locating the firms' service areas and for allocating their respective meteorological stations and coordinates. Results suggest that on average under cost models there is a significant increase in efficiency when weather is incorporated in the production function. Firms from Brazil and Peru are those which operate in less favourable weather conditions. Under the cost-quality models, on average the effect of weather is much lower. From this, it appears to be that firms have internalised the effects of weather and have adapted their networks with consideration to the environment in which they operate. A company-level analysis indicates that across models an important number of companies are affected by weather. Regulators are advised to make the case for the proper adjustments of efficiency scores when specific firms face important efficiency changes due to weather.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Karim L. Anaya & Michael G. Pollitt, 2014. "Does Weather Have an Impact on Electricity Distribution Efficiency? Evidence from South America," Working Papers EPRG 1404, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:eprg1404
    as

    Download full text from publisher

    File URL: https://www.eprg.group.cam.ac.uk/wp-content/uploads/2014/03/1404-PDF1.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jamasb, T. & Orea, L. & Pollitt, M.G., 2010. "Weather Factors and Performance of Network Utilities: A Methodology and Application to Electricity Distribution," Cambridge Working Papers in Economics 1042, Faculty of Economics, University of Cambridge.
    2. William Yu & Michael G. Pollitt, 2009. "Does Liberalisation cause more electricity blackouts? Evidence from a global study of newspaper reports," Working Papers EPRG 0902, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Antonio Estache & MartÌn A. Rossi & Christian A. Ruzzier, 2004. "The Case for International Coordination of Electricity Regulation: Evidence from the Measurement of Efficiency in South America," Journal of Regulatory Economics, Springer, vol. 25(3), pages 271-295, May.
    4. P. Nillesen & M. Pollitt, 2010. "Using Regulatory Benchmarking Techniques to Set Company Performance Targets: The Case of Us Electricity," Competition and Regulation in Network Industries, Intersentia, vol. 11(1), pages 50-85, March.
    5. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    6. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    7. Tim Coelli & Antonio Estache & Sergio Perelman & Lourdes Trujillo, 2003. "A Primer on Efficiency Measurement for Utilities and Transport Regulators," World Bank Publications - Books, The World Bank Group, number 15149.
    8. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    9. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980, October.
    10. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    11. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2010. "Efficiency effects of quality of service and environmental factors: experience from Norwegian electricity distribution," EWI Working Papers 2010-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    12. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    13. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2012. "Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 34(2), pages 542-548.
    14. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    15. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    16. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anaya, Karim L. & Pollitt, Michael G., 2017. "Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1078-1094.
    2. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    3. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    4. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    5. Mehdi Farsi & Massimo Filippini & William Greene, 2006. "Application Of Panel Data Models In Benchmarking Analysis Of The Electricity Distribution Sector," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 271-290, September.
    6. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2014. "Using the latent class approach to cluster firms in benchmarking: An application to the US electricity transmission industry," Operations Research Perspectives, Elsevier, vol. 1(1), pages 6-17.
    7. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    8. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    9. Deng, Na-Qian & Liu, Li-Qiu & Deng, Ying-Zhi, 2018. "Estimating the effects of restructuring on the technical and service-quality efficiency of electricity companies in China," Utilities Policy, Elsevier, vol. 50(C), pages 91-100.
    10. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    11. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Department of Economics - Working Papers Series 1092, The University of Melbourne.
    12. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    13. Keller, Michael, 2020. "Wasted windfalls: Inefficiencies in health care spending in oil rich countries," Resources Policy, Elsevier, vol. 66(C).
    14. Russ Kashian & Nicholas Lovett & Yuhan Xue, 2020. "Has the affordable care act affected health care efficiency?," Journal of Regulatory Economics, Springer, vol. 58(2), pages 193-233, December.
    15. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    16. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    17. Christian Growitsch & Tooraj Jamasb & Michael Pollitt, 2009. "Quality of service, efficiency and scale in network industries: an analysis of European electricity distribution," Applied Economics, Taylor & Francis Journals, vol. 41(20), pages 2555-2570.
    18. Francisca Pacheco & Rafael Sánchez & Mauricio G. Villena, 2021. "Estimating local government efficiency using a panel data parametric approach: the case of Chilean municipalities," Applied Economics, Taylor & Francis Journals, vol. 53(3), pages 292-314, January.
    19. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    20. Catherine Cazals & Paul Dudley & Jean-Pierre Florens & Michael Jones, 2012. "A Panel Data Analysis of Inefficiency and Heterogeneity in the Postal Sector," Chapters, in: Michael A. Crew & Paul R. Kleindorfer (ed.), Multi-Modal Competition and the Future of Mail, chapter 8, Edward Elgar Publishing.

    More about this item

    Keywords

    technical efficiency; stocastic frontier analysis; electricity distribution markets; weather; South America;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg1404. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.