IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Count Data Stochastic Frontier Models, with an application to the patents-R&D Relationship

Listed author(s):
  • Eduardo Fé-Rodríguez
  • Richard Hofler

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hummedia.manchester.ac.uk/schools/soss/economics/discussionpapers/EDP-0916.pdf
Download Restriction: no

Paper provided by Economics, The University of Manchester in its series The School of Economics Discussion Paper Series with number 0916.

as
in new window

Length:
Date of creation: 2009
Handle: RePEc:man:sespap:0916
Contact details of provider: Postal:
Manchester M13 9PL

Phone: (0)161 275 4868
Fax: (0)161 275 4812
Web page: http://www.socialsciences.manchester.ac.uk/subjects/economics/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
  2. PARK, Byeong U. & SICKLES, Robin C. & SIMAR, Léopold, 1996. "Stochastic Panel Frontiers : A Semiparametric Approach," CORE Discussion Papers 1996038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521477451, May.
  4. Zvi Griliches, 1990. "Patent Statistics as Economic Indicators: A Survey," NBER Working Papers 3301, National Bureau of Economic Research, Inc.
  5. Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
  6. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
  7. Byeong U. Park & Leopold Simar & Valentin Zelenyuk, 2008. "Local Likelihood Estimation of Truncated Regression and Its Partial Derivatives: Theory and Application," Discussion Papers 7, Kyiv School of Economics.
  8. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1989. "Production Frontiers With Cross-Sectinal And Time-Series Variation In Efficiency Levels," Working Papers 89-18, C.V. Starr Center for Applied Economics, New York University.
  9. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
  10. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
  11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, May.
  12. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
  13. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
  14. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
  15. Greene, W.H., 2000. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," New York University, Leonard N. Stern School Finance Department Working Paper Seires 00-05, New York University, Leonard N. Stern School of Business-.
  16. Orme, Chris, 1990. "The small-sample performance of the information-matrix test," Journal of Econometrics, Elsevier, vol. 46(3), pages 309-331, December.
  17. Martins-Filho, Carlos & Yao, Feng, 2007. "Nonparametric frontier estimation via local linear regression," Journal of Econometrics, Elsevier, vol. 141(1), pages 283-319, November.
  18. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2007. "Semiparametric efficient estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 136(1), pages 281-301, January.
  19. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
  20. Geweke, John, 1996. "Monte carlo simulation and numerical integration," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 15, pages 731-800 Elsevier.
  21. Wei Siang Wang & Peter Schmidt, 2007. "On The Distribution of Estimated Technical Efficiency in Stochastic Frontier Models," CEPA Working Papers Series WP022007, School of Economics, University of Queensland, Australia.
  22. Pakes, Ariel & Griliches, Zvi, 1980. "Patents and R&D at the firm level: A first report," Economics Letters, Elsevier, vol. 5(4), pages 377-381.
  23. Jerry A. Hausman & Bronwyn H. Hall & Zvi Griliches, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," NBER Technical Working Papers 0017, National Bureau of Economic Research, Inc.
  24. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, May.
  25. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-764, May.
  26. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  27. Cameron, A Colin & Johansson, Per, 1997. "Count Data Regression Using Series Expansions: With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 203-223, May-June.
  28. Sickles, Robin C., 2005. "Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings," Journal of Econometrics, Elsevier, vol. 126(2), pages 305-334, June.
  29. repec:fth:harver:1473 is not listed on IDEAS
  30. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-784, July.
  31. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
  32. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
  33. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  34. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711.
  35. Bronwyn H. Hall & Clint Cumminq & Elizabeth S. Laderman & Joy Mundy, 1988. "The R&D Master File Documentation," NBER Technical Working Papers 0072, National Bureau of Economic Research, Inc.
  36. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
  37. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  38. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  39. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:man:sespap:0916. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marianne Sensier)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.