IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1330.html
   My bibliography  Save this paper

Stochastic panel frontiers: A semiparametric approach

Author

Listed:
  • PARK, Beyong U.
  • SICKLES, Robin C.
  • SIMAR, Léopold

Abstract

This paper complements the results of Hausman and Taylor (1981) and Cornwell, Schmidt and Sickles (1990) and generalizes Park and Simar (1994) by examining the semiparametric efficient estimation of panel models in which the random effects and the regressors have certain patterns of correlation. A model in which the estimator may have particular promise is the stochastic panel frontier model. In that model inefficiency may be correlated with certain determinants of technology or proxies for heterogeneity in the application of that technology. Generalized least squares or other estimators that fail to address this dependency structure are inconsistent. We examine semiparametric efficient estimation for three different models based on differing dependency structures. Efficiency of the slope parameters and the asymptotic proper- ties of the level of the frontier function are explored. We illustrate our new estimator in an analysis of productive efficiency between selected North American and European airline firms after domestic deregulation in the U.S. and prior to recent European reforms implemented in the course of EC integration.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • PARK, Beyong U. & SICKLES, Robin C. & SIMAR, Léopold, 1998. "Stochastic panel frontiers: A semiparametric approach," LIDAM Reprints CORE 1330, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1330
    DOI: 10.1016/S0304-4076(97)00087-0
    Note: In : Journal of Econometrics, 84, 273-301, 1998
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/S0304-4076(97)00087-0
    Download Restriction: no

    File URL: https://libkey.io/10.1016/S0304-4076(97)00087-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. David Good & M. Nadiri & Lars-Hendrik Röller & Robin Sickles, 1993. "Efficiency and productivity growth comparisons of European and U.S. Air carriers: A first look at the data," Journal of Productivity Analysis, Springer, vol. 4(1), pages 115-125, June.
    4. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    5. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    6. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    7. Sickles, Robin C., 1985. "A nonlinear multivariate error components analysis of technology and specific factor productivity growth with an application to the U.S. Airlines," Journal of Econometrics, Elsevier, vol. 27(1), pages 61-78, January.
    8. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    9. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    10. Breusch, Trevor S & Mizon, Grayham E & Schmidt, Peter, 1989. "Efficient Estimation Using Panel Data," Econometrica, Econometric Society, vol. 57(3), pages 695-700, May.
    11. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    12. Amemiya, Takeshi & MaCurdy, Thomas E, 1986. "Instrumental-Variable Estimation of an Error-Components Model," Econometrica, Econometric Society, vol. 54(4), pages 869-880, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    2. So Im, Kyung & Ahn, Seung C. & Schmidt, Peter & Wooldridge, Jeffrey M., 1999. "Efficient estimation of panel data models with strictly exogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 93(1), pages 177-201, November.
    3. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    4. Sickles, Robin C., 2005. "Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings," Journal of Econometrics, Elsevier, vol. 126(2), pages 305-334, June.
    5. Karagiannis, Giannis & Tzouvelekas, Vangelis, 2009. "Parametric Measurement of Time-Varying Technical Inefficiency: Results from Competing Models," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 10(1), pages 1-30.
    6. Good, D. & Nadiri, M.I. & Sickles, R., 1996. "Index Number and Factor Demand Approaches to the Estimarion of Productivity," Working Papers 96-34, C.V. Starr Center for Applied Economics, New York University.
    7. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    8. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    9. Eduardo Fé Rodríguez, 2009. "Adaptive Instrumental Variable Estimation of Heteroskedastic Error Component Models," Economics Discussion Paper Series 0921, Economics, The University of Manchester.
    10. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    11. Doug J. Chung & Byungyeon Kim & Byoung G. Park, 2019. "How Do Sales Efforts Pay Off? Dynamic Panel Data Analysis in the Nerlove–Arrow Framework," Management Science, INFORMS, vol. 65(11), pages 5197-5218, November.
    12. William Greene, 2001. "Fixed and Random Effects in Nonlinear Models," Working Papers 01-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    13. Tim Coelli & Sergio Perelman & Elliot Romano, 1999. "Accounting for Environmental Influences in Stochastic Frontier Models: With Application to International Airlines," Journal of Productivity Analysis, Springer, vol. 11(3), pages 251-273, June.
    14. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    15. Chay, Kenneth Y. & Lee, David S., 2000. "Changes in relative wages in the 1980s Returns to observed and unobserved skills and black-white wage differentials," Journal of Econometrics, Elsevier, vol. 99(1), pages 1-38, November.
    16. Pedro L Marin, 1995. "Productivity Differences in the Airline Industry: Partial Deregulation Versus Short-Run Protection," STICERD - Economics of Industry Papers 11, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
    18. Jung Hur & Rasyad A. Parinduri & Yohanes E. Riyanto, 2011. "Cross‐Border M&A Inflows And Quality Of Country Governance: Developing Versus Developed Countries," Pacific Economic Review, Wiley Blackwell, vol. 16(5), pages 638-655, December.
    19. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    20. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.