IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1330.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Stochastic panel frontiers: A semiparametric approach

Author

Listed:
  • PARK, Beyong U.
  • SICKLES, Robin C.
  • SIMAR, Léopold

Abstract

This paper complements the results of Hausman and Taylor (1981) and Cornwell, Schmidt and Sickles (1990) and generalizes Park and Simar (1994) by examining the semiparametric efficient estimation of panel models in which the random effects and the regressors have certain patterns of correlation. A model in which the estimator may have particular promise is the stochastic panel frontier model. In that model inefficiency may be correlated with certain determinants of technology or proxies for heterogeneity in the application of that technology. Generalized least squares or other estimators that fail to address this dependency structure are inconsistent. We examine semiparametric efficient estimation for three different models based on differing dependency structures. Efficiency of the slope parameters and the asymptotic proper- ties of the level of the frontier function are explored. We illustrate our new estimator in an analysis of productive efficiency between selected North American and European airline firms after domestic deregulation in the U.S. and prior to recent European reforms implemented in the course of EC integration.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • PARK, Beyong U. & SICKLES, Robin C. & SIMAR, Léopold, 1998. "Stochastic panel frontiers: A semiparametric approach," LIDAM Reprints CORE 1330, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1330
    DOI: 10.1016/S0304-4076(97)00087-0
    Note: In : Journal of Econometrics, 84, 273-301, 1998
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/S0304-4076(97)00087-0
    Download Restriction: no

    File URL: https://libkey.io/10.1016/S0304-4076(97)00087-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Good & M. Nadiri & Lars-Hendrik Röller & Robin Sickles, 1993. "Efficiency and productivity growth comparisons of European and U.S. Air carriers: A first look at the data," Journal of Productivity Analysis, Springer, vol. 4(1), pages 115-125, June.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Amemiya, Takeshi & MaCurdy, Thomas E, 1986. "Instrumental-Variable Estimation of an Error-Components Model," Econometrica, Econometric Society, vol. 54(4), pages 869-880, July.
    4. Breusch, Trevor S & Mizon, Grayham E & Schmidt, Peter, 1989. "Efficient Estimation Using Panel Data," Econometrica, Econometric Society, vol. 57(3), pages 695-700, May.
    5. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    6. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    7. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    8. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    9. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    10. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    11. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    12. Sickles, Robin C., 1985. "A nonlinear multivariate error components analysis of technology and specific factor productivity growth with an application to the U.S. Airlines," Journal of Econometrics, Elsevier, vol. 27(1), pages 61-78, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    2. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    3. Sickles, Robin C., 2005. "Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings," Journal of Econometrics, Elsevier, vol. 126(2), pages 305-334, June.
    4. So Im, Kyung & Ahn, Seung C. & Schmidt, Peter & Wooldridge, Jeffrey M., 1999. "Efficient estimation of panel data models with strictly exogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 93(1), pages 177-201, November.
    5. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.
    6. Eduardo Fé Rodríguez, 2009. "Adaptive Instrumental Variable Estimation of Heteroskedastic Error Component Models," Economics Discussion Paper Series 0921, Economics, The University of Manchester.
    7. Chay, Kenneth Y. & Lee, David S., 2000. "Changes in relative wages in the 1980s Returns to observed and unobserved skills and black-white wage differentials," Journal of Econometrics, Elsevier, vol. 99(1), pages 1-38, November.
    8. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    9. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
    10. Jung Hur & Rasyad A. Parinduri & Yohanes E. Riyanto, 2011. "Cross‐Border M&A Inflows And Quality Of Country Governance: Developing Versus Developed Countries," Pacific Economic Review, Wiley Blackwell, vol. 16(5), pages 638-655, December.
    11. Estache, Antonio & Kouassi, Eugene, 2002. "Sector organization, governance, and the inefficiency of African water utilities," Policy Research Working Paper Series 2890, The World Bank.
    12. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    13. Meryem Duygun & Levent Kutlu & Robin C. Sickles, 2016. "Measuring productivity and efficiency: a Kalman filter approach," Journal of Productivity Analysis, Springer, vol. 46(2), pages 155-167, December.
    14. David H. Good & M. Ishaq Nadiri & Robin C. Sickles, 1996. "Index Number and Factor Demand Approaches to the Estimation of Productivity," NBER Working Papers 5790, National Bureau of Economic Research, Inc.
    15. Dong, Xiao-yuan & Putterman, Louis, 1997. "Productivity and Organization in China's Rural Industries: A Stochastic Frontier Analysis," Journal of Comparative Economics, Elsevier, vol. 24(2), pages 181-201, April.
    16. Aditi Bhattacharyya, 2012. "Adjustment of inputs and measurement of technical efficiency: A dynamic panel data analysis of the Egyptian manufacturing sectors," Empirical Economics, Springer, vol. 42(3), pages 863-880, June.
    17. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    18. Doug J. Chung & Byungyeon Kim & Byoung G. Park, 2019. "How Do Sales Efforts Pay Off? Dynamic Panel Data Analysis in the Nerlove–Arrow Framework," Management Science, INFORMS, vol. 65(11), pages 5197-5218, November.
    19. Peter Dawson & Stephen Dobson & Bill Gerrard, 2000. "Estimating Coaching Efficiency in Professional Team Sports: Evidence from English Association Football," Scottish Journal of Political Economy, Scottish Economic Society, vol. 47(4), pages 399-421, September.
    20. Giannis Karagiannis & Magnus Kellermann, 2019. "Stochastic frontier models with correlated effects," Journal of Productivity Analysis, Springer, vol. 51(2), pages 175-187, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.