Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2024.104374
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Francesca R. Crucinio & Arnaud Doucet & Adam M. Johansen, 2023. "A Particle Method for Solving Fredholm Equations of the First Kind," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 937-947, April.
- Benaglia, Tatiana & Chauveau, Didier & Hunter, David R. & Young, Derek S., 2009. "mixtools: An R Package for Analyzing Mixture Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i06).
- Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
- Malrieu, F., 2001. "Logarithmic Sobolev inequalities for some nonlinear PDE's," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 109-132, September.
- Brosse, Nicolas & Durmus, Alain & Moulines, Éric & Sabanis, Sotirios, 2019. "The tamed unadjusted Langevin algorithm," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3638-3663.
- Charles Byrne & Paul P. B. Eggermont, 2015. "EM Algorithms," Springer Books, in: Otmar Scherzer (ed.), Handbook of Mathematical Methods in Imaging, edition 2, pages 305-388, Springer.
- P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
- Ma, Jun, 2011. "Indirect density estimation using the iterative Bayes algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1180-1195, March.
- Pui Hing Chau & Wei Ying Li & Paul S. F. Yip, 2020. "Construction of the Infection Curve of Local Cases of COVID-19 in Hong Kong using Back-Projection," IJERPH, MDPI, vol. 17(18), pages 1-8, September.
- Chae, Minwoo & Martin, Ryan & Walker, Stephen G., 2018. "Convergence of an iterative algorithm to the nonparametric MLE of a mixing distribution," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 142-146.
- Wang Miao & Zhi Geng & Eric J Tchetgen Tchetgen, 2018. "Identifying causal effects with proxy variables of an unmeasured confounder," Biometrika, Biometrika Trust, vol. 105(4), pages 987-993.
- Meleard, Sylvie & Roelly-Coppoletta, Sylvie, 1987. "A propagation of chaos result for a system of particles with moderate interaction," Stochastic Processes and their Applications, Elsevier, vol. 26, pages 317-332.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bianchi, Pascal & Hachem, Walid & Priser, Victor, 2025. "Long run convergence of discrete-time interacting particle systems of the McKean–Vlasov type," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
- Mari R. Tye & Sue Ellen Haupt & Eric Gilleland & Christina Kalb & Tara Jensen, 2019. "Assessing Evidence for Weather Regimes Governing Solar Power Generation in Kuwait," Energies, MDPI, vol. 12(23), pages 1-17, November.
- Rahul Singh & Moses Stewart, 2025. "Placebo Discontinuity Design," Papers 2507.12693, arXiv.org.
- Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
- Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
- Dai, Xiaofeng, 2016. "Non-parametric efficiency estimation using Richardson–Lucy blind deconvolution," European Journal of Operational Research, Elsevier, vol. 248(2), pages 731-739.
- Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
- Fabio Canova & Christian Matthes, 2021.
"Dealing with misspecification in structural macroeconometric models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
- Canova, Fabio & Matthes, Christian, 2019. "Dealing with misspecification in structural macroeconometric models," CEPR Discussion Papers 13511, C.E.P.R. Discussion Papers.
- Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
- Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
- Jourdain, B., 1998. "Convergence of moderately interacting particle systems to a diffusion-convection equation," Stochastic Processes and their Applications, Elsevier, vol. 73(2), pages 247-270, March.
- Gustavo Alexis Sabillón & Luiz Gabriel Fernandes Cotrim & Daiane Aparecida Zuanetti, 2023. "A data-driven reversible jump for estimating a finite mixture of regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 350-369, March.
- Haoze Hou & Wei Huang & Zheng Zhang, 2025. "Non-parametric Quantile Regression and Uniform Inference with Unknown Error Distribution," Papers 2504.01761, arXiv.org.
- G. Tamburello & G. Chiodini & G. Ciotoli & M. Procesi & D. Rouwet & L. Sandri & N. Carbonara & C. Masciantonio, 2022. "Global thermal spring distribution and relationship to endogenous and exogenous factors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Otsu, Taisuke & Taylor, Luke, 2021.
"Specification Testing For Errors-In-Variables Models,"
Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
- Taisuke Otsu & Luke Taylor, 2016. "Specification testing for errors-in-variables models," STICERD - Econometrics Paper Series /2015/586, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Otsu, Taisuke & Taylor, Luke, 2020. "Specification testing for errors-in-variables models," LSE Research Online Documents on Economics 102690, London School of Economics and Political Science, LSE Library.
- Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
- Zhongren Chen & Siyu Chen & Zhengling Qi & Xiaohong Chen & Zhuoran Yang, 2025. "Quantile-Optimal Policy Learning under Unmeasured Confounding," Cowles Foundation Discussion Papers 2469, Cowles Foundation for Research in Economics, Yale University.
- William Horrace & Christopher Parmeter, 2011.
"Semiparametric deconvolution with unknown error variance,"
Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
- William C. Horrace & Christopher F. Parmeter, 2008. "Semiparametric Deconvolution with Unknown Error Variance," Center for Policy Research Working Papers 104, Center for Policy Research, Maxwell School, Syracuse University.
- Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
- Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000802. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/spapps/v173y2024ics0304414924000802.html