IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Regularization of Nonparametric Frontier Estimators

  • Daouia, Abdelaati
  • Florens, Jean-Pierre
  • Simar, Léopold

In production theory and efficiency analysis, we are interested in estimating the production frontier which is the locus of the maximal attainable level of an output (the production), given a set of inputs (the production factors). In other setups, we are rather willing to estimate an input (or cost) frontier that is defined as the minimal level of the input (cost) attainable for a given set of outputs (goods or services produced). In both cases the problem can be viewed as estimating a surface under shape constraints (monotonicity, . . . ). In this paper we derive the theory of an estimator of the frontier having an asymptotic normal distribution. The basic tool is the order-m partial frontier where we let the order m to converge to infinity when n ! 1 but at a slow rate. The final estimator is then corrected for its inherent bias. We thus can view our estimator as a regularized frontier estimator which, in addition, is more robust to extreme values and outliers than the usual nonparametric frontier estimators, like FDH. The performances of our estimators are evaluated in finite samples through some Monte-Carlo experiments. We illustrate also how to provide, in an easy way, confidence intervals for the frontier function both with a simulated data set and a real data set.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://idei.fr/doc/wp/2009/wp_idei_614.pdf
File Function: Full text
Download Restriction: no

Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 614.

as
in new window

Length:
Date of creation: Sep 2009
Date of revision:
Publication status: Published in Journal of Econometrics, vol.�168, n°2, juin 2012, p.�285-299.
Handle: RePEc:ide:wpaper:22808
Contact details of provider: Postal: Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE
Phone: +33 (0)5 61 12 85 89
Fax: + 33 (0)5 61 12 86 37
Web page: http://www.idei.fr/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(02), pages 358-389, April.
  2. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
  3. Kneip, Alois & Park, Byeong U. & Simar, L opold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(06), pages 783-793, December.
  4. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1663-1697, December.
  5. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
  6. Abdelaati Daouia & Irène Gijbels, 2011. "Robustness and inference in nonparametric partial-frontier modeling," Post-Print peer-00796744, HAL.
  7. Daouia, Abdelaati & Simar, Léopold, 2005. "Robust nonparametric estimators of monotone boundaries," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 311-331, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:22808. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.