IDEAS home Printed from https://ideas.repec.org/p/ide/wpaper/23149.html
   My bibliography  Save this paper

Iterative Regularization in Nonparametric Instrumental Regression

Author

Listed:
  • Johannes, Jan
  • Van Bellegem, Sébastien
  • Vanhems, Anne

Abstract

We consider the nonparametric regression model with an additive error that is correlated with the explanatory variables. We suppose the existence of instrumental variables that are considered in this model for the identification and the estimation of the regression function. The nonparametric estimation by instrumental variables is an illposed linear inverse problem with an unknown but estimable operator. We provide a new estimator of the regression function using an iterative regularization method (the Landweber-Fridman method). The optimal number of iterations and the convergence of the mean square error of the resulting estimator are derived under both mild and severe degrees of ill-posedness. A Monte-Carlo exercise shows the impact of some parameters on the estimator and concludes on the reasonable finite sample performance of the new estimator.

Suggested Citation

  • Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2010. "Iterative Regularization in Nonparametric Instrumental Regression," IDEI Working Papers 630, Institut d'Économie Industrielle (IDEI), Toulouse.
  • Handle: RePEc:ide:wpaper:23149
    as

    Download full text from publisher

    File URL: http://idei.fr/sites/default/files/medias/doc/wp/2010/wp_idei_630.pdf
    File Function: Full text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    2. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(03), pages 522-545, June.
    3. Joshua Angrist & Alan Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Working Papers 834, Princeton University, Department of Economics, Industrial Relations Section..
    4. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    5. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, Southern Economic Association, vol. 71(3), pages 636-660, January.
    6. Winfried Pohlmeier & Luc Bauwens & David Veredas, 2007. "High frequency financial econometrics. Recent developments," ULB Institutional Repository 2013/136223, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Keilegom, Ingrid & Vanhems, Anne, 2016. "Estimation of a semiparametric transformation model in the presence of endogeneity," TSE Working Papers 16-654, Toulouse School of Economics (TSE).
    2. Centorrino Samuele & Feve Frederique & Florens Jean-Pierre, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-25, January.
    3. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    4. Samuele Centorrino & Jean-Pierre Florens, 2014. "Nonparametric Instrumental Variable Estimation of Binary Response Models," Department of Economics Working Papers 14-07, Stony Brook University, Department of Economics.

    More about this item

    Keywords

    Nonparametric estimation; Instrumental variable; Ill-posed inverse problem;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:23149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/idtlsfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.