IDEAS home Printed from
   My bibliography  Save this paper

Optimally Combining Censored and Uncensored Datasets


  • Devereux, Paul J.
  • Tripathi, Gautam


We develop a simple semiparametric framework for combining censored and uncensored samples so that the resulting estimators are consistent, asymptotically normal, and use all information optimally. No nonparametric smoothing is required to implement our estimators. To illustrate our results in an empirical setting, we show how to estimate the effect of changes in compulsory schooling laws on age at first marriage, a variable that is censored for younger individuals. We find positive effects of the laws on age at first marriage but the effects are much smaller than would be inferred if one ignored the censoring problem. Results from a small simulation experiment suggest that the estimator proposed in this paper can work very well in finite samples.

Suggested Citation

  • Devereux, Paul J. & Tripathi, Gautam, 2008. "Optimally Combining Censored and Uncensored Datasets," CEPR Discussion Papers 6990, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:6990

    Download full text from publisher

    File URL:
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Sanders Korenman & David Neumark, 1992. "Marriage, Motherhood, and Wages," Journal of Human Resources, University of Wisconsin Press, vol. 27(2), pages 233-255.
    2. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Levine's Bibliography 321307000000000307, UCLA Department of Economics.
    3. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    4. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    5. Guido W. Imbens & Tony Lancaster, 1994. "Combining Micro and Macro Data in Microeconometric Models," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 655-680.
    6. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
    7. Claudia Goldin & Lawrence F. Katz, 2002. "The Power of the Pill: Oral Contraceptives and Women's Career and Marriage Decisions," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 730-770, August.
    8. Bergstrom, Ted & Schoeni, Robert F, 1996. "Income Prospects and Age-at-Marriage," Journal of Population Economics, Springer;European Society for Population Economics, vol. 9(2), pages 115-130, May.
    9. Akerlof, George A, 1998. "Men without Children," Economic Journal, Royal Economic Society, vol. 108(447), pages 287-309, March.
    10. Joshua D. Angrist & Alan B. Krueger, 1990. "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples," NBER Working Papers 3571, National Bureau of Economic Research, Inc.
    11. Ridder, Geert & Moffitt, Robert, 2007. "The Econometrics of Data Combination," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 75 Elsevier.
    12. Judith K. Hellerstein & Guido W. Imbens, 1999. "Imposing Moment Restrictions From Auxiliary Data By Weighting," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 1-14, February.
    13. Sanders Korenman & David Neumark, 1991. "Does Marriage Really Make Men More Productive?," Journal of Human Resources, University of Wisconsin Press, vol. 26(2), pages 282-307.
    14. Lleras-Muney, Adriana, 2002. "Were Compulsory Attendance and Child Labor Laws Effective? An Analysis from 1915 to 1939," Journal of Law and Economics, University of Chicago Press, vol. 45(2), pages 401-435, October.
    15. Nevo, Aviv, 2003. "Using Weights to Adjust for Sample Selection When Auxiliary Information Is Available," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 43-52, January.
    16. Claudia Goldin & Lawrence Katz, 2003. "Mass Secondary Schooling and the State," NBER Working Papers 10075, National Bureau of Economic Research, Inc.
    17. Keisuke Hirano & Guido W. Imbens & Geert Ridder & Donald B. Rubin, 2001. "Combining Panel Data Sets with Attrition and Refreshment Samples," Econometrica, Econometric Society, vol. 69(6), pages 1645-1659, November.
    18. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    19. Lance Lochner & Enrico Moretti, 2004. "The Effect of Education on Crime: Evidence from Prison Inmates, Arrests, and Self-Reports," American Economic Review, American Economic Association, vol. 94(1), pages 155-189, March.
    20. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-519, March.
    21. Oreopoulos, Philip, 2007. "Do dropouts drop out too soon? Wealth, health and happiness from compulsory schooling," Journal of Public Economics, Elsevier, vol. 91(11-12), pages 2213-2229, December.
    22. Daron Acemoglu & Joshua Angrist, 2001. "How Large are Human-Capital Externalities? Evidence from Compulsory-Schooling Laws," NBER Chapters,in: NBER Macroeconomics Annual 2000, Volume 15, pages 9-74 National Bureau of Economic Research, Inc.
    23. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    24. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    25. Xiaohong Chen & Han Hong & Alessandro Tarozzi, 2008. "Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects," Cowles Foundation Discussion Papers 1644, Cowles Foundation for Research in Economics, Yale University.
    26. Geert Ridder & Yingyao Hu, 2004. "Estimation of Nonlinear Models with Measurement Error Using Marginal Information," Econometric Society 2004 North American Summer Meetings 21, Econometric Society.
    27. Manuel Arellano & Costas Meghir, 1992. "Female Labour Supply and On-the-Job Search: An Empirical Model Estimated Using Complementary Data Sets," Review of Economic Studies, Oxford University Press, vol. 59(3), pages 537-559.
    28. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    29. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Cowles Foundation Discussion Papers 1569, Cowles Foundation for Research in Economics, Yale University.
    30. Severini, Thomas A. & Tripathi, Gautam, 2001. "A simplified approach to computing efficiency bounds in semiparametric models," Journal of Econometrics, Elsevier, vol. 102(1), pages 23-66, May.
    31. Guido W. Imbens, 1997. "One-Step Estimators for Over-Identified Generalized Method of Moments Models," Review of Economic Studies, Oxford University Press, vol. 64(3), pages 359-383.
    32. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    33. SandraE. Black & PaulJ. Devereux & KjellG. Salvanes, 2008. "Staying in the Classroom and out of the maternity ward? The effect of compulsory schooling laws on teenage births," Economic Journal, Royal Economic Society, vol. 118(530), pages 1025-1054, July.
    34. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Maria K. Humlum & Jannie H.G. Kristoffersen & Rune Vejlin, 2012. "Timing of College Enrollment and Family Formation Decisions," Economics Working Papers 2012-01, Department of Economics and Business Economics, Aarhus University.
    2. repec:eee:labeco:v:48:y:2017:i:c:p:215-230 is not listed on IDEAS
    3. Powdthavee, Nattavudh & Adireksombat, Kampon, 2010. "From Classroom to Wedding Aisle: The Effect of a Nationwide Change in the Compulsory Schooling Law on Age at First Marriage in the UK," IZA Discussion Papers 5019, Institute for the Study of Labor (IZA).
    4. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.

    More about this item


    age at first marriage; censored data; compulsory schooling;

    JEL classification:

    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • J12 - Labor and Demographic Economics - - Demographic Economics - - - Marriage; Marital Dissolution; Family Structure

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:6990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.