IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/16928.html
   My bibliography  Save this paper

Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)

Author

Listed:
  • Bryan S. Graham
  • Cristine Campos de Xavier Pinto
  • Daniel Egel

Abstract

We propose a locally efficient estimator for a class of semiparametric data combination problems. A leading estimand in this class is the Average Treatment Effect on the Treated (ATT). Data combination problems are related to, but distinct from, the class of missing data problems analyzed by Robins, Rotnitzky and Zhao (1994) (of which the Average Treatment Effect (ATE) estimand is a special case). Our estimator also possesses a double robustness property. Our procedure may be used to efficiently estimate, among other objects, the ATT, the two-sample instrumental variables model (TSIV), counterfactual distributions, poverty maps, and semiparametric difference-in-differences. In an empirical application we use our procedure to characterize residual Black-White wage inequality after flexibly controlling for 'pre-market' differences in measured cognitive achievement as in Neal and Johnson (1996).

Suggested Citation

  • Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2011. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," NBER Working Papers 16928, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:16928
    Note: LS TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w16928.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. DiNardo, John & Fortin, Nicole M & Lemieux, Thomas, 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Econometrica, Econometric Society, vol. 64(5), pages 1001-1044, September.
    2. Judith K. Hellerstein & Guido W. Imbens, 1999. "Imposing Moment Restrictions From Auxiliary Data By Weighting," The Review of Economics and Statistics, MIT Press, vol. 81(1), pages 1-14, February.
    3. Bryan S. Graham, 2011. "Efficiency Bounds for Missing Data Models With Semiparametric Restrictions," Econometrica, Econometric Society, vol. 79(2), pages 437-452, March.
    4. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    5. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    6. Barsky R. & Bound J. & Charles K.K. & Lupton J.P., 2002. "Accounting for the Black-White Wealth Gap: A Nonparametric Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 663-673, September.
    7. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    8. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    9. Jing Qin & And Biao Zhang, 2008. "Empirical‐likelihood‐based difference‐in‐differences estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 329-349, April.
    10. Alessandro Tarozzi & Angus Deaton, 2009. "Using Census and Survey Data to Estimate Poverty and Inequality for Small Areas," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 773-792, November.
    11. Evelyn Kitagawa, 1964. "Standardized comparisons in population research," Demography, Springer;Population Association of America (PAA), vol. 1(1), pages 296-315, March.
    12. Tan, Zhiqiang, 2006. "A Distributional Approach for Causal Inference Using Propensity Scores," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1619-1637, December.
    13. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    14. Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
    15. Atsushi Inoue & Gary Solon, 2010. "Two-Sample Instrumental Variables Estimators," The Review of Economics and Statistics, MIT Press, vol. 92(3), pages 557-561, August.
    16. Currie, Janet & Yelowitz, Aaron, 2000. "Are public housing projects good for kids?," Journal of Public Economics, Elsevier, vol. 75(1), pages 99-124, January.
    17. Keisuke Hirano & Guido W. Imbens & Geert Ridder & Donald B. Rubin, 2001. "Combining Panel Data Sets with Attrition and Refreshment Samples," Econometrica, Econometric Society, vol. 69(6), pages 1645-1659, November.
    18. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    19. Jing Cheng & Dylan S. Small & Zhiqiang Tan & Thomas R. Ten Have, 2009. "Efficient nonparametric estimation of causal effects in randomized trials with noncompliance," Biometrika, Biometrika Trust, vol. 96(1), pages 19-36.
    20. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    21. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    22. Neal, Derek A & Johnson, William R, 1996. "The Role of Premarket Factors in Black-White Wage Differences," Journal of Political Economy, University of Chicago Press, vol. 104(5), pages 869-895, October.
    23. Patrick Kline, 2011. "Oaxaca-Blinder as a Reweighting Estimator," American Economic Review, American Economic Association, vol. 101(3), pages 532-537, May.
    24. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    25. Zhiqiang Tan, 2010. "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, Biometrika Trust, vol. 97(3), pages 661-682.
    26. William A. Darity & Patrick L. Mason, 1998. "Evidence on Discrimination in Employment: Codes of Color, Codes of Gender," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 63-90, Spring.
    27. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    2. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    3. Kwun Chuen Gary Chan & Sheung Chi Phillip Yam & Zheng Zhang, 2016. "Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 673-700, June.
    4. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    5. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    6. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    7. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    9. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    10. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    11. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    12. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    13. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.
    15. Słoczyński, Tymon, 2012. "New Evidence on Linear Regression and Treatment Effect Heterogeneity," MPRA Paper 39524, University Library of Munich, Germany.
    16. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    17. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    18. Strittmatter, Anthony & Wunsch, Conny, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," Working papers 2021/05, Faculty of Business and Economics - University of Basel.
    19. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • J7 - Labor and Demographic Economics - - Labor Discrimination

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:16928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.