IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0311.html
   My bibliography  Save this paper

Two-Sample Instrumental Variables Estimators

Author

Listed:
  • Atsushi Inoue
  • Gary Solon

Abstract

Following an influential article by Angrist and Krueger (1992) on two-sample instrumental variables (TSIV) estimation, numerous empirical researchers have applied a computationally convenient two-sample two-stage least squares (TS2SLS) variant of Angrist and Krueger's estimator. In the two-sample context, unlike the single-sample situation, the IV and 2SLS estimators are numerically distinct. Our comparison of the properties of the two estimators demonstrates that the commonly used TS2SLS estimator is more asymptotically efficient than the TSIV estimator and also is more robust to a practically relevant type of sample stratification.

Suggested Citation

  • Atsushi Inoue & Gary Solon, 2005. "Two-Sample Instrumental Variables Estimators," NBER Technical Working Papers 0311, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0311
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0311.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Currie, Janet & Yelowitz, Aaron, 2000. "Are public housing projects good for kids?," Journal of Public Economics, Elsevier, vol. 75(1), pages 99-124, January.
    3. Borjas, George J., 2004. "Food insecurity and public assistance," Journal of Public Economics, Elsevier, vol. 88(7-8), pages 1421-1443, July.
    4. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    5. Joshua D. Angrist & Alan B. Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
    6. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    7. Joshua D. Angrist & Alan B. Krueger, 1990. "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples," NBER Working Papers 3571, National Bureau of Economic Research, Inc.
    8. Bjorklund, Anders & Jantti, Markus, 1997. "Intergenerational Income Mobility in Sweden Compared to the United States," American Economic Review, American Economic Association, vol. 87(5), pages 1009-1018, December.
    9. Thomas S. Dee & William N. Evans, 2003. "Teen Drinking and Educational Attainment: Evidence from Two-Sample Instrumental Variables Estimates," Journal of Labor Economics, University of Chicago Press, vol. 21(1), pages 178-209, January.
    10. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 397-416, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Di & Zhan, Lue & Bordignon, Massimo, 2020. "A reconsideration of the sugar sweetened beverage tax in a household production model," Food Policy, Elsevier, vol. 95(C).
    2. Massimo Bordignon & Di Xiang & Lue Zhan, 2018. "Predicting the Effects of a Sugar Sweetened Beverage Tax in a Household Production Model," DISCE - Working Papers del Dipartimento di Economia e Finanza def075, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    3. Xin Xu & Robert Kaestner, 2010. "The Business Cycle and Health Behaviors," NBER Working Papers 15737, National Bureau of Economic Research, Inc.
    4. Xu, Xin, 2013. "The business cycle and health behaviors," Social Science & Medicine, Elsevier, vol. 77(C), pages 126-136.
    5. Borjas, George J., 2004. "Food insecurity and public assistance," Journal of Public Economics, Elsevier, vol. 88(7-8), pages 1421-1443, July.
    6. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    7. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    8. Xu Sun & Xiaolu Lei & Baisen Liu, 2021. "Mobility Divergence in China? Complete Comparisons of Social Class Mobility and Income Mobility," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(2), pages 687-709, January.
    9. Hirukawa, Masayuki & Prokhorov, Artem, 2018. "Consistent estimation of linear regression models using matched data," Journal of Econometrics, Elsevier, vol. 203(2), pages 344-358.
    10. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    11. Asadul Islam & Dietrich K. Fausten, 2008. "Skilled Immigration and Wages in Australia," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 66-82, September.
    12. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    13. Kenneth D. West & David W. Wilcox, 1993. "Some evidence on finite sample behavior of an instrumental variables estimator of the linear quadratic inventory model," Finance and Economics Discussion Series 93-29, Board of Governors of the Federal Reserve System (U.S.).
    14. Lemos Sara, 2005. "Political Variables as Instruments for the Minimum Wage," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-33, December.
    15. Carroll, Christopher D. & Weil, David N., 1994. "Saving and growth: a reinterpretation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 40(1), pages 133-192, June.
    16. DUFOUR, Jean-Marie & JASIAK, Joanna, 1998. "Finite-Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Cahiers de recherche 9812, Universite de Montreal, Departement de sciences economiques.
    17. Jalan, Jyotsna & Ravallion, Martin, 1998. "Are there dynamic gains from a poor-area development program?," Journal of Public Economics, Elsevier, vol. 67(1), pages 65-85, January.
    18. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    19. Rucker C. Johnson & C. Kirabo Jackson, 2019. "Reducing Inequality through Dynamic Complementarity: Evidence from Head Start and Public School Spending," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 310-349, November.
    20. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0311. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.