IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1190.html
   My bibliography  Save this paper

Nonlinear Regressions with Integrated Time Series

Author

Listed:

Abstract

An asymptotic theory is developed for nonlinear regression with integrated processes. The models allow for nonlinear effects from unit root time series and therefore deal with the case of parametric nonlinear cointegration. The theory covers integrable, asymptotically homogeneous and explosive functions. Sufficient conditions for weak consistency are given and a limit distribution theory is provided. In general, the limit theory is mixed normal with mixing variates that depend on the sojourn time of the limiting Brownian motion of the integrated process. The rates of convergence depend on the properties of the nonlinear regression function, and are shown to be as slow as n^{1/4} for integrable functions, to be generally polynomial in n^{1/2} for homogeneous functions, and to be path dependent in the case of explosive functions.

Suggested Citation

  • Joon Y. Park & Peter C.B. Phillips, 1998. "Nonlinear Regressions with Integrated Time Series," Cowles Foundation Discussion Papers 1190, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1190
    Note: CFP 1016.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d11/d1190.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(4), pages 489-500, December.
    3. Donald W. K. Andrews & C. John McDermott, 1995. "Nonlinear Econometric Models with Deterministically Trending Variables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(3), pages 343-360.
    4. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    5. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    6. Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
    7. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    8. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    9. repec:cup:etheor:v:8:y:1992:i:4:p:489-500 is not listed on IDEAS
    10. repec:cup:etheor:v:11:y:1995:i:5:p:888-911 is not listed on IDEAS
    11. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    12. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    13. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    14. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    15. Saikkonen, Pentti, 1995. "Problems with the Asymptotic Theory of Maximum Likelihood Estimation in Integrated and Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 11(5), pages 888-911, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    2. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    3. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    4. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    5. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    6. Kuo, Biing-Shen, 1998. "Test for partial parameter instability in regressions with I(1) processes," Journal of Econometrics, Elsevier, vol. 86(2), pages 337-368, June.
    7. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    8. Hsiao, Cheng & Fujiki, Hiroshi, 1998. "Nonstationary Time-Series Modeling versus Structural Equation Modeling: With an Application to Japanese Money Demand," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 16(1), pages 57-79, May.
    9. Peter C.B. Phillips, 2001. "Bootstrapping Spurious Regression," Cowles Foundation Discussion Papers 1330, Cowles Foundation for Research in Economics, Yale University.
    10. Li, Dao & He, Changli, 2012. "Testing for Linear Cointegration Against Smooth-Transition Cointegration," Working Papers 2012:6, Örebro University, School of Business.
    11. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    12. Phillips, Peter C. B., 2002. "New unit root asymptotics in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 111(2), pages 323-353, December.
    13. Cheng, Xu & Phillips, Peter C.B., 2012. "Cointegrating rank selection in models with time-varying variance," Journal of Econometrics, Elsevier, vol. 169(2), pages 155-165.
    14. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
    15. Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
    16. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    17. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    18. Peter C. B. Phillips & Xiaohu Wang & Yonghui Zhang, 2019. "HAR Testing for Spurious Regression in Trend," Econometrics, MDPI, vol. 7(4), pages 1-28, December.
    19. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    20. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.

    More about this item

    Keywords

    Functionals of Brownian motion; Brownian motion; integrated process; local time; mixed normal limit theory; nonlinear transformations; nonparametric density estimation; occupation time; nonlinear regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.