IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1473.html
   My bibliography  Save this paper

Regression Asymptotics Using Martingale Convergence Methods

Author

Abstract

Weak convergence of partial sums and multilinear forms in independent random variables and linear processes to stochastic integrals now plays a major role in nonstationary time series and has been central to the development of unit root econometrics. The present paper develops a new and conceptually simple method for obtaining such forms of convergence. The method relies on the fact that the econometric quantities of interest involve discrete time martingales or semimartingales and shows how in the limit these quantities become continuous martingales and semimartingales. The limit theory itself uses very general convergence results for semimartingales that were obtained in work by Jacod and Shiryaev (2003). The theory that is developed here is applicable in a wide range of econometric models and many examples are given. One notable outcome of the new approach is that it provides a unified treatment of the asymptotics for stationary autoregression and autoregression with roots at or near unity, as both these cases are subsumed within the martingale convergence approach and different rates of convergence are accommodated in a natural way. The approach is also useful in developing asymptotics for certain nonlinear functions of integrated processes, which are now receiving attention in econometric applications, and some new results in this area are presented. The paper is partly of pedagogical interest and the conceptual simplicity of the methods is appealing. Since this is the first time the methods have been used in econometrics, the exposition is presented in some detail with illustrations of new derivations of some well-known existing results, as well as some new asymptotic results and the unification of the limit theory for autoregression.

Suggested Citation

  • Rustam Ibragimov & Peter C.B. Phillips, 2004. "Regression Asymptotics Using Martingale Convergence Methods," Cowles Foundation Discussion Papers 1473, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1473
    Note: CFP 1245.
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d14/d1473.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. P tscher, Benedikt M., 2004. "Nonlinear Functions And Convergence To Brownian Motion: Beyond The Continuous Mapping Theorem," Econometric Theory, Cambridge University Press, vol. 20(01), pages 1-22, February.
    2. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    3. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(04), pages 888-947, August.
    4. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    5. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    6. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    7. Saikkonen, Pentti & Choi, In, 2004. "Cointegrating Smooth Transition Regressions," Econometric Theory, Cambridge University Press, vol. 20(02), pages 301-340, April.
    8. In Choi & Pentti Saikkonen, 2004. "Testing linearity in cointegrating smooth transition regressions," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 341-365, December.
    9. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    10. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    11. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    12. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    13. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(06), pages 995-1045, December.
    14. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo C. Medeiros & Eduardo Mendes & Les Oxley, 2014. "A Note on Nonlinear Cointegration, Misspecification, and Bimodality," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 713-731, October.
    2. Andrew P. Blake & George Kapetanios, 2007. "Testing for Neglected Nonlinearity in Cointegrating Relationships," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 807-826, November.
    3. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(04), pages 888-947, August.
    4. Chang, Yoosoon, 2012. "Taking a new contour: A novel approach to panel unit root tests," Journal of Econometrics, Elsevier, vol. 169(1), pages 15-28.
    5. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    6. Ioannis Kasparis & Peter C. B. Phillips & Tassos Magdalinos, 2014. "Nonlinearity Induced Weak Instrumentation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 676-712, August.
    7. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    8. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    9. Wagner, Martin, 2012. "The Phillips unit root tests for polynomials of integrated processes," Economics Letters, Elsevier, vol. 114(3), pages 299-303.
    10. Pötscher, Benedikt M., 2013. "On The Order Of Magnitude Of Sums Of Negative Powers Of Integrated Processes," Econometric Theory, Cambridge University Press, vol. 29(03), pages 642-658, June.
    11. repec:bla:jtsera:v:38:y:2017:i:6:p:1000-1009 is not listed on IDEAS
    12. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    13. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(06), pages 1349-1375, December.
    14. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    15. Offer Lieberman & Peter C.B. Phillips, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 3013, Cowles Foundation for Research in Economics, Yale University.
    16. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    17. MArcelo Cunha Medeiros & Eduardo Mendes & Les Oxley, 2010. "Nonlinear Cointegration, Misspecification and Bimodality," Textos para discussão 577, Department of Economics PUC-Rio (Brazil).
    18. repec:sbe:breart:v:33:y:2013:i:2:a:24116 is not listed on IDEAS
    19. Offer Lieberman & Peter C.B. Phillips, 2017. "Hybrid Stochastic Local Unit Roots," Cowles Foundation Discussion Papers 2113, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Keywords

    Semimartingale; martingale; convergence; stochastic integrals; bilinear forms; multilinear forms; U-statistics; unit root; stationarity; Brownian motion; invariance principle; unification;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1473. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.