IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.12595.html
   My bibliography  Save this paper

Locally trimmed least squares: conventional inference in possibly nonstationary models

Author

Listed:
  • Zhishui Hu
  • Ioannis Kasparis
  • Qiying Wang

Abstract

A novel IV estimation method, that we term Locally Trimmed LS (LTLS), is developed which yields estimators with (mixed) Gaussian limit distributions in situations where the data may be weakly or strongly persistent. In particular, we allow for nonlinear predictive type of regressions where the regressor can be stationary short/long memory as well as nonstationary long memory process or a nearly integrated array. The resultant t-tests have conventional limit distributions (i.e. N(0; 1)) free of (near to unity and long memory) nuisance parameters. In the case where the regressor is a fractional process, no preliminary estimator for the memory parameter is required. Therefore, the practitioner can conduct inference while being agnostic about the exact dependence structure in the data. The LTLS estimator is obtained by applying certain chronological trimming to the OLS instrument via the utilisation of appropriate kernel functions of time trend variables. The finite sample performance of LTLS based t-tests is investigated with the aid of a simulation experiment. An empirical application to the predictability of stock returns is also provided.

Suggested Citation

  • Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
  • Handle: RePEc:arx:papers:2006.12595
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.12595
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    4. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    5. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    6. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    7. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    8. Peter C. B. Phillips, 2014. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
    9. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    10. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
    11. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    12. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    13. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 99-125.
    14. P. M. Robinson & J. Hualde, 2003. "Cointegration in Fractional Systems with Unknown Integration Orders," Econometrica, Econometric Society, vol. 71(6), pages 1727-1766, November.
    15. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    16. Wang, Qiying & Phillips, Peter C.B., 2011. "Asymptotic Theory For Zero Energy Functionals With Nonparametric Regression Applications," Econometric Theory, Cambridge University Press, vol. 27(2), pages 235-259, April.
    17. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    18. Hjalmarsson, Erik, 2011. "New Methods for Inference in Long-Horizon Regressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(3), pages 815-839, June.
    19. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    20. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    21. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    22. Christopeit, Norbert, 2009. "Weak Convergence Of Nonlinear Transformations Of Integrated Processes: The Multivariate Case," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1180-1207, October.
    23. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    24. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    25. Robinson, Peter M. & Hualde, Javier, 2003. "Cointegration in fractional systems with unknown integration orders," LSE Research Online Documents on Economics 2223, London School of Economics and Political Science, LSE Library.
    26. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    27. Wang, Qiying, 2014. "Martingale Limit Theorem Revisited And Nonlinear Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 30(3), pages 509-535, June.
    28. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    29. Peter C. B. Phillips, 2015. "Pitfalls and Possibilities in Predictive Regression," Cowles Foundation Discussion Papers 2003, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    2. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    3. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    4. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    5. Li, Degui & Phillips, Peter C.B. & Gao, Jiti, 2020. "Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression," Journal of Econometrics, Elsevier, vol. 215(2), pages 607-632.
    6. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.
    7. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    8. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    9. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    10. Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
    11. Dong, Chaohua & Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2017. "Specification testing for nonlinear multivariate cointegrating regressions," Journal of Econometrics, Elsevier, vol. 200(1), pages 104-117.
    12. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    13. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    14. Weilun Zhou & Jiti Gao & David Harris & Hsein Kew, 2019. "Semiparametric Single-index Predictive Regression," Monash Econometrics and Business Statistics Working Papers 25/19, Monash University, Department of Econometrics and Business Statistics.
    15. Biqing Cai & Jiti Gao, 2013. "Hermite Series Estimation in Nonlinear Cointegrating Models," Monash Econometrics and Business Statistics Working Papers 17/13, Monash University, Department of Econometrics and Business Statistics.
    16. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Jesús Gonzalo & Jean-Yves Pitarakis, 2011. "Regime-Specific Predictability in Predictive Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 229-241, June.
    18. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    19. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    20. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.12595. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.