IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v4y2001i1p1-36.html
   My bibliography  Save this article

Nonlinear econometric models with cointegrated and deterministically trending regressors

Author

Listed:
  • YOOSOON CHANG
  • JOON Y. PARK
  • PETER C. B. PHILLIPS

Abstract

This paper develops an asymptotic theory for a general class of nonlinear non-stationary regressions, extending earlier work by Phillips and Hansen (1990) on linear coin-tegrating regressions.The model considered accommodates a linear time trend and stationary regressors, as well as multiple I(1) regressors. We establish consistency and derive the limit distribution of the nonlinear least squares estimator. The estimator is consistent under fairly general conditions but the convergence rate and the limiting distribution are critically dependent upon the type of the regression function. For integrable regression functions, the parameter estimates converge at a reduced n 1 4 rate and have mixed normal limit distributions. On the other hand, if the regression functions are homogeneous at infinity, the convergence rates are determined by the degree of the asymptotic homogeneity and the limit distributions are non-Gaussian. It is shown that nonlinear least squares generally yields inefficient estimators and invalid tests, just as in linear nonstationary regressions. The paper proposes a methodol-ogy to overcome such difficulties. The approach is simple to implement, produces efficient estimates and leads to tests that are asymptotically chi-square. It is implemented in empirical applications in much the same way as the fully modified estimator of Phillips and Hansen.

Suggested Citation

  • Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
  • Handle: RePEc:ect:emjrnl:v:4:y:2001:i:1:p:1-36
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Joon Y. Park & Peter C. B. Phillips, 2000. "Nonstationary Binary Choice," Econometrica, Econometric Society, vol. 68(5), pages 1249-1280, September.
    3. repec:cup:etheor:v:7:y:1991:i:1:p:1-21 is not listed on IDEAS
    4. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    5. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(01), pages 95-131, April.
    6. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    7. repec:cup:etheor:v:8:y:1992:i:4:p:489-500 is not listed on IDEAS
    8. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(03), pages 468-497, December.
    9. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(04), pages 489-500, December.
    10. Donald W. K. Andrews & C. John McDermott, 1995. "Nonlinear Econometric Models with Deterministically Trending Variables," Review of Economic Studies, Oxford University Press, vol. 62(3), pages 343-360.
    11. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    12. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(01), pages 1-21, March.
    13. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:4:y:2001:i:1:p:1-36. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.