IDEAS home Printed from
   My bibliography  Save this article

Asymptotically Efficient Estimation of Cointegration Regressions


  • Saikkonen, Pentti


An asymptotic optimality theory for the estimation of cointegration regressions is developed in this paper. The theory applies to a reasonably wide class of estimators without making any specific assumptions about the probability distribution or short-run dynamics of the data-generating process. Due to the nonstandard nature of the estimation problem, the conventional minimum variance criterion does not provide a convenient measure of asymptotic efficiency. An alternative criterion, based on the concentration or peakedness of the limiting distribution of an estimator, is therefore adopted. The limiting distribution of estimators with maximum asymptotic efficiency is characterized in the paper and used to discuss the optimality of some known estimators. A new asymptotically efficient estimator is also introduced. This estimator is obtained from the ordinary least-squares estimator by a time domain correction which is nonparametric in the sense that no assumption of a finite parameter model is required. The estimator can be computed with least squares without any initial estimations.

Suggested Citation

  • Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
  • Handle: RePEc:cup:etheor:v:7:y:1991:i:01:p:1-21_00

    Download full text from publisher

    File URL:
    File Function: link to article abstract page
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:7:y:1991:i:01:p:1-21_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.