IDEAS home Printed from https://ideas.repec.org/p/erm/papers/0710.html

Forecasting with Spatial Panel Data

Author

Listed:
  • BALTAGI B-H
  • BRESSON G.
  • PIROTTE A.

Abstract

Various forecasts using panel data with spatial error correlation are compared using Monte Carlo experiments. The true data generating process is assumed to be a simple error component regression model with spatial remainder disturbances of the autoregressive or moving average type. The best linear unbiased predictor is compared with other forecasts ignoring spatial correlation, or ignoring heterogeneity due to the individual effects. In addition, the root mean squared error performance of these forecasts is examined under misspecification of the spatial error process, various spatial weight matrices, and heterogeneous rather than homogeneous panel data models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Baltagi B-H & Bresson G. & Pirotte A., 2007. "Forecasting with Spatial Panel Data," Working Papers ERMES 0710, ERMES, University Paris 2.
  • Handle: RePEc:erm:papers:0710
    as

    Download full text from publisher

    File URL: http://ermes.u-paris2.fr/doctrav/0710
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erm:papers:0710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ermp2fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.