IDEAS home Printed from https://ideas.repec.org/p/brh/wpaper/0616.html

Optimal forecasting with heterogeneous panels: a Monte Carlo study

Author

Listed:
  • Lorenzo Trapani
  • Giovanni Urga

Abstract

This paper reports the results of a series of Monte Carlo exercises to contrast the forecasting performance of several panel data estimators, divided into three main groups (homogeneous, heterogeneous and shrinkage/Bayesian). The comparison is done using different levels of heterogeneity, alternative panel structures in terms of T and N and using various error dynamics speci.cations. We also consider the presence of various degrees of cross sectional dependence among units. To assess the predictive performance, we use traditional measures of forecast accuracy (Theil's U statistics, RMSE and MAE), the Diebold and Mariano's (1995) test, and the Pesaran and Timmerman's (1992) statistics on the capability of forecasting turning points. The main finding of our analysis is that in presence of heterogeneous panels the Bayesian procedures have systematically the best predictive power independently of the model's features.

Suggested Citation

  • Lorenzo Trapani & Giovanni Urga, 2006. "Optimal forecasting with heterogeneous panels: a Monte Carlo study," Working Papers 0616, Department of Management, Information and Production Engineering, University of Bergamo.
  • Handle: RePEc:brh:wpaper:0616
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10446/427
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Ken Imanak Sagynbekov, 2014. "A tale of six states: How similar are the Gulf Cooperation Council countries?," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 23(4), pages 476-490, June.
    3. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    4. Morales-Arias, Leonardo & Moura, Guilherme V., 2013. "Adaptive forecasting of exchange rates with panel data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
    5. Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.
    6. Massimiliano Mazzanti & Antonio Musolesi, 2013. "The heterogeneity of carbon Kuznets curves for advanced countries: comparing homogeneous, heterogeneous and shrinkage/Bayesian estimators," Applied Economics, Taylor & Francis Journals, vol. 45(27), pages 3827-3842, September.
    7. Trapani, Lorenzo, 2012. "On the asymptotic t-test for large nonstationary panel models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3286-3306.
    8. Ernesto Aguayo-T鬬ez & Jos頍art󹑺-Navarro, 2013. "Internal and international migration in Mexico: 1995--2000," Applied Economics, Taylor & Francis Journals, vol. 45(13), pages 1647-1661, May.
    9. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2014. "Estimating country-specific environmental Kuznets curves from panel data: a Bayesian shrinkage approach," Applied Economics, Taylor & Francis Journals, vol. 46(13), pages 1449-1464, May.
    10. Grégory Donnat & Anna Tykhonenko, 2023. "Debt Relief: The Day After, Financing Developing Countries," GREDEG Working Papers 2023-07, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France, revised Dec 2024.
    11. David Schröder & Andrew Yim, 2018. "Industry Effects in Firm and Segment Profitability Forecasting," Contemporary Accounting Research, John Wiley & Sons, vol. 35(4), pages 2106-2130, December.
    12. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    13. Reibling, Nadine, 2013. "The international performance of healthcare systems in population health: Capabilities of pooled cross-sectional time series methods," Health Policy, Elsevier, vol. 112(1), pages 122-132.
    14. Thomas Jobert & Alexandru Monahov & Anna Tykhonenko, 2014. "Domestic Credit in Times of Supervision: An Empirical Investigation of European Countries," GREDEG Working Papers 2014-30, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    15. Anna Tykhonenko & Donnat Grégory, 2022. "Debt Relief: The Day After, Financing Low-Income Countries," Post-Print hal-04298772, HAL.
    16. Pietro Giorgio Lovaglio, 2025. "Cross‐Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 753-780, March.
    17. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2012. "Trade and Environment: Further Empirical Evidence from Heterogeneous Panels Using Aggregate Data," GREDEG Working Papers 2012-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    18. Morales-Arias, Leonardo & Dross, Alexander, 2010. "Adaptive forecasting of exchange rates with panel data," Kiel Working Papers 1656, Kiel Institute for the World Economy (IfW Kiel).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:brh:wpaper:0616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: University of Bergamo Library (email available below). General contact details of provider: https://edirc.repec.org/data/diberit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.