IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/138.html
   My bibliography  Save this paper

Estimation and Prediction in the Random Effects Model with AR(p) Remainder Disturbances

Author

Abstract

This paper considers the problem of estimation and forecasting in a panel data model with random individual effects and AR(p) remainder disturbances. It utilizes a simple exact transformation for the AR(p) time series process derived by Baltagi and Li (1994) and obtains the generalized least squares estimator for this panel model as a least squares regression. This exact transformation is also used in conjunction with Goldberger’s (1962) result to derive an analytic expression for the best linear unbiased predictor. The performance of this predictor is investigated using Monte Carlo experiments and illustrated using an empirical example. Key Words: Prediction; Panel Data; Random Effects; Serial Correlation; AR(p) JEL Classification: C32

Suggested Citation

  • Badi H. Baltagi & Long Liu, 2012. "Estimation and Prediction in the Random Effects Model with AR(p) Remainder Disturbances," Center for Policy Research Working Papers 138, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:138
    as

    Download full text from publisher

    File URL: http://www.maxwell.syr.edu/uploadedFiles/cpr/publications/working_papers2/wp138.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maeshiro, Asatoshi, 1976. "Autoregressive Transformation, Trended Independent Variables and Autocorrelated Disturbance Terms," The Review of Economics and Statistics, MIT Press, vol. 58(4), pages 497-500, November.
    2. Wansbeek, Tom & Kapteyn, Arie, 1983. "A note on spectral decomposition and maximum likelihood estimation in models with balanced data," Statistics & Probability Letters, Elsevier, vol. 1(4), pages 213-215, June.
    3. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    4. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, pages 359-382.
    5. Baltagi, Badi H. & Li, Qi, 1991. "A transformation that will circumvent the problem of autocorrelation in an error-component model," Journal of Econometrics, Elsevier, vol. 48(3), pages 385-393, June.
    6. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
    7. Maeshiro, Asatoshi, 1979. "On the Retention of the First Observations in Serial Correlation Adjustment of Regression Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 20(1), pages 259-265, February.
    8. Frees, Edward W. & Miller, Thomas W., 2004. "Sales forecasting using longitudinal data models," International Journal of Forecasting, Elsevier, vol. 20(1), pages 99-114.
    9. Eugene Kouassi & Joel Sango & J. M. Bosson Brou & Francis N. Teubissi & Kern O. Kymn, 2011. "Prediction from the regression model with two‐way error components," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 541-564, September.
    10. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
    11. Taub, Allan J., 1979. "Prediction in the context of the variance-components model," Journal of Econometrics, Elsevier, vol. 10(1), pages 103-107, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:138. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margaret Austin) or (Candi Patterson) or (Katrina Wingle). General contact details of provider: http://edirc.repec.org/data/cpsyrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.