IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v68y2025i5d10.1007_s00181-024-02695-9.html
   My bibliography  Save this article

Two-way random effects model with serial correlation

Author

Listed:
  • Badi H. Baltagi

    (Syracuse University
    Leicester University)

  • Georges Bresson

    (Université Paris Panthéon-Assas)

  • Jean-Michel Etienne

    (Université Paris-Saclay)

Abstract

This paper derives a feasible GLS estimator for a two-way error component model with serial correlation on both the time effects as well as the remainder disturbances. This estimator is based on two methods, one proposed by De Porres and Krishnaku mar(2013) for deriving the spectral decomposition of a general error component structure and the other based on an inversion trick for the variance-covariance matrix of this model suggested by Skoglund and Karlsson (2001). While the last paper used maximum likelihood methods under the normality assumption, we use method of moments estimators following Baltagi and Li (1991) for the one-way error component model with serially correlated remainder disturbances and its extension by Brou et al. (2011) for the two-way model with serially correlated time effects as well as remainder disturbances. Monte Carlo simulations are performed to compare the performance of these two estimators as well as a bias correction version based on Nobach (2023). Our results find that the method based on the (Skoglund and Karlsson 2001) inverse that is bias corrected a la (Nobach 2023) performs the best in root mean square error (RMSE) as well as mean absolute percentage error (MAPE) and is recommended.

Suggested Citation

  • Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2025. "Two-way random effects model with serial correlation," Empirical Economics, Springer, vol. 68(5), pages 2041-2072, May.
  • Handle: RePEc:spr:empeco:v:68:y:2025:i:5:d:10.1007_s00181-024-02695-9
    DOI: 10.1007/s00181-024-02695-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-024-02695-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-024-02695-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Timothy J. Vogelsang & Jingjing Yang, 2016. "Exactly/Nearly Unbiased Estimation of Autocovariances of a Univariate Time Series With Unknown Mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 723-740, November.
    2. Baltagi, Badi H. & Li, Qi, 1991. "A transformation that will circumvent the problem of autocorrelation in an error-component model," Journal of Econometrics, Elsevier, vol. 48(3), pages 385-393, June.
    3. Wu, Jianhong & Zhu, Lixing, 2011. "Testing for serial correlation and random effects in a two-way error component regression model," Economic Modelling, Elsevier, vol. 28(6), pages 2377-2386.
    4. Fuller, Wayne A. & Battese, George E., 1974. "Estimation of linear models with crossed-error structure," Journal of Econometrics, Elsevier, vol. 2(1), pages 67-78, May.
    5. Sune Karlsson & Jimmy Skoglund, 2004. "Maximum-likelihood based inference in the two-way random effects model with serially correlated time effects," Empirical Economics, Springer, vol. 29(1), pages 79-88, January.
    6. Baltagi, Badi H. & Li, Qi, 1994. "Estimating Error Component Models With General MA(q) Disturbances," Econometric Theory, Cambridge University Press, vol. 10(2), pages 396-408, June.
    7. Magnus, Jan R. & Muris, Chris, 2010. "Specification Of Variance Matrices For Panel Data Models," Econometric Theory, Cambridge University Press, vol. 26(1), pages 301-310, February.
    8. Badi H. Baltagi, 2021. "Econometric Analysis of Panel Data," Springer Texts in Business and Economics, Springer, edition 6, number 978-3-030-53953-5, January.
    9. Okui, Ryo, 2010. "Asymptotically Unbiased Estimation Of Autocovariances And Autocorrelations With Long Panel Data," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1263-1304, October.
    10. Galbraith, John W. & Zinde-Walsh, Victoria, 1995. "Transforming the error-components model for estimation with general ARMA disturbances," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 349-355.
    11. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    2. Paolo, Foschi, 2005. "Estimating regressions and seemingly unrelated regressions with error component disturbances," MPRA Paper 1424, University Library of Munich, Germany, revised 07 Sep 2006.
    3. Jimmy Skoglund & Sune Karlsson, 2002. "Asymptotics for random effects models with serial correlation," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 A6-1, International Conferences on Panel Data.
    4. Chihwa Kao & Jamie Emerson, 1998. "On the Estimation of a Linear Time Trend Regression with a One- Way Error Component Model in the Presence of Serially Correlated Errors," Econometrics 9805004, University Library of Munich, Germany.
    5. Yifan Li & Yao Rao, 2021. "A simple nearly unbiased estimator of cross‐covariances," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 240-266, March.
    6. Badi H. Baltagi & Chihwa Kao & Long Liu, 2007. "Asymptotic Properties of Estimators for the Linear Panel Regression Model with Individual Effects and Serially Correlated Errors: The Case of Stationary and Non-Stationary Regressors and Residuals," Center for Policy Research Working Papers 93, Center for Policy Research, Maxwell School, Syracuse University.
    7. Badi H. Baltagi & Long Liu, 2020. "Forecasting with unbalanced panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 709-724, August.
    8. Julie Le Gallo & Marc-Alexandre Sénégas, 2023. "On the Proper Computation of the Hausman Test Statistic in Standard Linear Panel Data Models: Some Clarifications and New Results," Econometrics, MDPI, vol. 11(4), pages 1-28, November.
    9. Yang, Jingjing & Vogelsang, Timothy J., 2018. "Finite sample performance of a long run variance estimator based on exactly (almost) unbiased autocovariance estimators," Economics Letters, Elsevier, vol. 165(C), pages 21-27.
    10. Baltagi, Badi H. & Liu, Long, 2013. "Estimation and prediction in the random effects model with AR(p) remainder disturbances," International Journal of Forecasting, Elsevier, vol. 29(1), pages 100-107.
    11. Robert F. Phillips, 2012. "On computing generalized least squares and maximum-likelihood estimates of error-components models with incomplete panels and correlated disturbances," Economics Bulletin, AccessEcon, vol. 32(4), pages 3017-3024.
    12. Qiu, Jin & Ma, Qing & Wu, Lang, 2019. "A moving blocks empirical likelihood method for panel linear fixed effects models with serial correlations and cross-sectional dependences," Economic Modelling, Elsevier, vol. 83(C), pages 394-405.
    13. Yuichi Goto & Koichi Arakaki & Yan Liu & Masanobu Taniguchi, 2023. "Homogeneity tests for one-way models with dependent errors under correlated groups," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 163-183, March.
    14. Marcel die Dama & Boniface ngah Epo & Galex syrie Soh, 2013. "Developing a two way error component estimation model with disturbances following a special autoregressive (4) for quarterly data," Economics Bulletin, AccessEcon, vol. 33(1), pages 625-634.
    15. Yang, Jingjing & Vogelsang, Timothy J., 2025. "A bias reduced long run variance estimator with a new first-order kernel," Economics Letters, Elsevier, vol. 252(C).
    16. Phillips, Robert F., 2004. "Estimation of a generalized random-effects model: some ECME algorithms and Monte Carlo evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 28(9), pages 1801-1824, July.
    17. Ruofan Liao & Zhengtao Chen & Jirakom Sirisrisakulchai & Jianxu Liu, 2025. "Enhancing Rural Economic Sustainability in China Through Agricultural Socialization Services: A Novel Perspective on Spatial-Temporal Dynamics," Agriculture, MDPI, vol. 15(3), pages 1-28, January.
    18. Badi H. Baltagi & Peter Egger & Michael Pfaffermayr, 2007. "A Monte Carlo Study for Pure and Pretest Estimators of a Panel Data Model with Spatially Autocorrelated Disturbances," Annals of Economics and Statistics, GENES, issue 87-88, pages 11-38.
    19. Sourafel Girma & Steve Thompson & Peter Wright, 2006. "International Acquisitions, Domestic Competition and Firm Performance," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 13(3), pages 335-349.
    20. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:68:y:2025:i:5:d:10.1007_s00181-024-02695-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.