IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v68y2025i5d10.1007_s00181-024-02695-9.html
   My bibliography  Save this article

Two-way random effects model with serial correlation

Author

Listed:
  • Badi H. Baltagi

    (Syracuse University
    Leicester University)

  • Georges Bresson

    (Université Paris Panthéon-Assas)

  • Jean-Michel Etienne

    (Université Paris-Saclay)

Abstract

This paper derives a feasible GLS estimator for a two-way error component model with serial correlation on both the time effects as well as the remainder disturbances. This estimator is based on two methods, one proposed by De Porres and Krishnaku mar(2013) for deriving the spectral decomposition of a general error component structure and the other based on an inversion trick for the variance-covariance matrix of this model suggested by Skoglund and Karlsson (2001). While the last paper used maximum likelihood methods under the normality assumption, we use method of moments estimators following Baltagi and Li (1991) for the one-way error component model with serially correlated remainder disturbances and its extension by Brou et al. (2011) for the two-way model with serially correlated time effects as well as remainder disturbances. Monte Carlo simulations are performed to compare the performance of these two estimators as well as a bias correction version based on Nobach (2023). Our results find that the method based on the (Skoglund and Karlsson 2001) inverse that is bias corrected a la (Nobach 2023) performs the best in root mean square error (RMSE) as well as mean absolute percentage error (MAPE) and is recommended.

Suggested Citation

  • Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2025. "Two-way random effects model with serial correlation," Empirical Economics, Springer, vol. 68(5), pages 2041-2072, May.
  • Handle: RePEc:spr:empeco:v:68:y:2025:i:5:d:10.1007_s00181-024-02695-9
    DOI: 10.1007/s00181-024-02695-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-024-02695-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-024-02695-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:68:y:2025:i:5:d:10.1007_s00181-024-02695-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.