IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v95y2011i4p435-452.html
   My bibliography  Save this article

Assessing the contribution of R&D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroskedasticity

Author

Listed:
  • Georges Bresson

    ()

  • Cheng Hsiao

    ()

  • Alain Pirotte

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Georges Bresson & Cheng Hsiao & Alain Pirotte, 2011. "Assessing the contribution of R&D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroskedasticity," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 435-452, December.
  • Handle: RePEc:spr:alstar:v:95:y:2011:i:4:p:435-452 DOI: 10.1007/s10182-011-0169-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10182-011-0169-y
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Swamy, P A V B, 1970. "Efficient Inference in a Random Coefficient Regression Model," Econometrica, Econometric Society, vol. 38(2), pages 311-323, March.
    2. Randolph, William C., 1988. "A transformation for heteroscedastic error components regression models," Economics Letters, Elsevier, vol. 27(4), pages 349-354.
    3. Basu S. & Chib S., 2003. "Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 224-235, January.
    4. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, December.
    5. Bresson G. & Hsiao C. & Pirotte A., 2007. "Assessing the Contribution of R&D to Total Factor Productivity – a Bayesian Approach to Account for Heterogeneity And Heteroscedasticity," Working Papers ERMES 0708, ERMES, University Paris 2.
    6. Hsiao, Cheng, 1975. "Some Estimation Methods for a Random Coefficient Model," Econometrica, Econometric Society, vol. 43(2), pages 305-325, March.
    7. Baltagi B-H. & Bresson G. & Pirotte A., 2004. "Joint LM test for homoskedasticity in a one-way error component model," Working Papers ERMES 0408, ERMES, University Paris 2.
    8. Georges Bresson & Cheng Hsiao & Alain Pirotte, 2011. "Assessing the contribution of R&D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroskedasticity," AStA Advances in Statistical Analysis, Springer;German Statistical Society, pages 435-452.
    9. Baltagi B. & Bresson G. & Pirotte A., 2004. "Adaptive estimation of heteroskedastic error component model," Working Papers ERMES 0402, ERMES, University Paris 2.
    10. Klein, Lawrence R., 1988. "The statistical approach to economics," Journal of Econometrics, Elsevier, vol. 37(1), pages 7-26, January.
    11. Nilanjana Roy, 2002. "Is Adaptive Estimation Useful For Panel Models With Heteroskedasticity In The Individual Specific Error Component? Some Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 189-203.
    12. Zellner, Arnold, 1988. "Bayesian analysis in econometrics," Journal of Econometrics, Elsevier, vol. 37(1), pages 27-50, January.
    13. Baltagi, Badi H., 1988. "An Alternative Heteroscedastic Error Components Model," Econometric Theory, Cambridge University Press, vol. 4(02), pages 349-350, August.
    14. Robert F. Phillips, 2003. "Estimation of a Stratified Error-Components Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 501-521, May.
    15. Magnus, Jan R., 1982. "Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 239-285, August.
    16. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2006. "Joint LM test for homoskedasticity in a one-way error component model," Journal of Econometrics, Elsevier, vol. 134(2), pages 401-417, October.
    17. Li, Qi & Stengos, Thanasis, 1994. "Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(4), pages 981-1000, November.
    18. Badi Baltagi & Georges Bresson & Alain Pirotte, 2005. "Adaptive Estimation Of Heteroskedastic Error Component Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(1), pages 39-58.
    19. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2008. "Fixed effects instrumental variables estimation in correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 142(1), pages 539-552, January.
    20. Baltagi, Badi H & Griffin, James M, 1988. "A Generalized Error Component Model with Heteroscedastic Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(4), pages 745-753, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harry Haupt & Cheng Hsiao, 2011. "Introduction to the special issue: interdisciplinary aspects of panel data analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, pages 325-327.
    2. Stuart S. Rosenthal & William C. Strange, 2003. "Geography, Industrial Organization, and Agglomeration," The Review of Economics and Statistics, MIT Press, pages 377-393.
    3. Georges Bresson & Jean-Michel Etienne & Pierre Mohnen, 2011. "How important is innovation? A Bayesian factor-augmented productivity model on panel data," Working Papers halshs-00812155, HAL.
    4. Claudio Lucifora & Dominique Meurs, 2006. "The Public Sector Pay Gap In France, Great Britain And Italy," Review of Income and Wealth, International Association for Research in Income and Wealth, pages 43-59.
    5. Badi Baltagi & Chihwa Kao & Sanggon Na, 2011. "Test of hypotheses in panel data models when the regressor and disturbances are possibly non-stationary," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 329-350, December.
    6. Bresson G. & Hsiao C. & Pirotte A., 2007. "Assessing the Contribution of R&D to Total Factor Productivity – a Bayesian Approach to Account for Heterogeneity And Heteroscedasticity," Working Papers ERMES 0708, ERMES, University Paris 2.
    7. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, pages 375-413.
    8. Georges Bresson & Cheng Hsiao & Alain Pirotte, 2011. "Assessing the contribution of R&D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroskedasticity," AStA Advances in Statistical Analysis, Springer;German Statistical Society, pages 435-452.
    9. Georges Bresson & Cheng Hsiao, 2011. "A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris," AStA Advances in Statistical Analysis, Springer;German Statistical Society, pages 501-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:95:y:2011:i:4:p:435-452. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.