IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_5468.html
   My bibliography  Save this paper

Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity

Author

Listed:
  • Kajal Lahiri
  • Huaming Peng
  • Xuguang Sheng

Abstract

We have argued that from the standpoint of a policy maker, the uncertainty of using the average forecast is not the variance of the average, but rather the average of the variances of the individual forecasts that incorporate idiosyncratic risks. With a slight reformulation of the loss function and a standard factor decomposition of a panel of forecasts, we show that the uncertainty of the average forecast can be expressed as the disagreement among the forecasters plus the volatility of the common shock. Using new statistics to test for the homogeneity of idiosyncratic errors under the joint limits with both T and n approaching infinity simultaneously, we show that some previously used measures significantly underestimate the conceptually correct benchmark forecast uncertainty.

Suggested Citation

  • Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.
  • Handle: RePEc:ces:ceswps:_5468
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp5468.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    2. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    3. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    4. Palm, F. & Zellner, A., 1991. "To combine or not to combine? issues of combining forecasts," LIDAM Discussion Papers CORE 1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    6. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    7. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50, Emerald Group Publishing Limited.
    8. Andrew Levin & Volker Wieland & John C. Williams, 2003. "The Performance of Forecast-Based Monetary Policy Rules Under Model Uncertainty," American Economic Review, American Economic Association, vol. 93(3), pages 622-645, June.
    9. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    10. Gianni Amisano & John Geweke, 2017. "Prediction Using Several Macroeconomic Models," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 912-925, December.
    11. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
    12. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    13. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    14. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2006. "Joint LM test for homoskedasticity in a one-way error component model," Journal of Econometrics, Elsevier, vol. 134(2), pages 401-417, October.
    15. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    16. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    17. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    18. Andrew J. Patton & Allan Timmermann, 2011. "Predictability of Output Growth and Inflation: A Multi-Horizon Survey Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 397-410, July.
    19. Richard K. Crump & Stefano Eusepi, 2016. "Fundamental Disagreement: How Much and Why?," Liberty Street Economics 20160113, Federal Reserve Bank of New York.
    20. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    21. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    22. Lahiri, Kajal & Teigland, Christie & Zaporowski, Mark, 1988. "Interest Rates and the Subjective Probability Distribution of Inflation Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 20(2), pages 233-248, May.
    23. Soojin Jo & Rodrigo Sekkel, 2019. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 436-446, July.
    24. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    25. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    26. Baltagi, Badi H. & Jung, Byoung Cheol & Song, Seuck Heun, 2010. "Testing for heteroskedasticity and serial correlation in a random effects panel data model," Journal of Econometrics, Elsevier, vol. 154(2), pages 122-124, February.
    27. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    28. Ozturk, Ezgi O. & Sheng, Xuguang Simon, 2018. "Measuring global and country-specific uncertainty," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 276-295.
    29. John Geweke & Gianni Amisano, 2014. "Analysis of Variance for Bayesian Inference," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 270-288, June.
    30. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, January.
    31. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    32. Makridakis, Spyros, 1989. "Why combining works?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 601-603.
    33. Gianna Boero & Jeremy Smith & Kenneth F. Wallis, 2008. "Uncertainty and Disagreement in Economic Prediction: The Bank of England Survey of External Forecasters," Economic Journal, Royal Economic Society, vol. 118(530), pages 1107-1127, July.
    34. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    35. Deaton, Angus, 1985. "Panel data from time series of cross-sections," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 109-126.
    36. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    37. Wändi Bruine De Bruin & Charles F. Manski & Giorgio Topa & Wilbert van der Klaauw, 2011. "Measuring consumer uncertainty about future inflation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(3), pages 454-478, April.
    38. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    39. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    40. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    41. Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions," American Economic Review, American Economic Association, vol. 105(5), pages 650-655, May.
    42. Michael P. Clements, 2014. "Forecast Uncertainty- Ex Ante and Ex Post : U.S. Inflation and Output Growth," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 206-216, April.
    43. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    44. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    45. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2017. "Online learning and forecast combination in unbalanced panels," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 257-288, March.
    46. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    47. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
    48. Michael Woodford, 2005. "Central bank communication and policy effectiveness," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, issue Aug, pages 399-474.
    49. Kenneth F. Wallis, 2005. "Combining Density and Interval Forecasts: A Modest Proposal," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 983-994, December.
    50. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    51. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130, February.
    52. Reifschneider, David & Tulip, Peter, 2019. "Gauging the uncertainty of the economic outlook using historical forecasting errors: The Federal Reserve’s approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1564-1582.
    53. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    54. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    55. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    56. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    57. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    58. Sunil Gupta & Peter C. Wilton, 1987. "Combination of Forecasts: An Extension," Management Science, INFORMS, vol. 33(3), pages 356-372, March.
    59. Joseph Engelberg & Charles F. Manski & Jared Williams, 2011. "Assessing the temporal variation of macroeconomic forecasts by a panel of changing composition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(7), pages 1059-1078, November.
    60. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    61. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    62. Sancetta, Alessio, 2010. "Recursive Forecast Combination For Dependent Heterogeneous Data," Econometric Theory, Cambridge University Press, vol. 26(2), pages 598-631, April.
    63. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    64. David L. Reifschneider & Peter Tulip, 2007. "Gauging the uncertainty of the economic outlook from historical forecasting errors," Finance and Economics Discussion Series 2007-60, Board of Governors of the Federal Reserve System (U.S.).
    65. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    66. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50, Emerald Group Publishing Limited.
    2. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    3. Philip Hans Franses, 2021. "Modeling Judgment in Macroeconomic Forecasts," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 401-417, December.
    4. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    5. Malte Knüppel & Guido Schultefrankenfeld, 2017. "Interest rate assumptions and predictive accuracy of central bank forecasts," Empirical Economics, Springer, vol. 53(1), pages 195-215, August.
    6. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    7. Pierre L. Siklos, 2017. "What has publishing inflation forecasts accomplished? Central banks and their competitors," CAMA Working Papers 2017-33, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    9. Monique Reid & Pierre Siklos, 2024. "Firm Level Expectations and Macroeconomic Conditions: Underpinnings and Disagreement," CAMA Working Papers 2024-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Pierre L. Siklos, 2016. "Forecast Disagreement and the Inflation Outlook: New International Evidence," IMES Discussion Paper Series 16-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
    11. Jonas Dovern & Matthias Hartmann, 2017. "Forecast performance, disagreement, and heterogeneous signal-to-noise ratios," Empirical Economics, Springer, vol. 53(1), pages 63-77, August.
    12. Wagner Piazza Gaglianone & João Victor Issler, 2014. "Microfounded Forecasting," Working Papers Series 372, Central Bank of Brazil, Research Department.
    13. Alexander Glas & Matthias Hartmann, 2022. "Uncertainty measures from partially rounded probabilistic forecast surveys," Quantitative Economics, Econometric Society, vol. 13(3), pages 979-1022, July.
    14. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    15. Reifschneider, David & Tulip, Peter, 2019. "Gauging the uncertainty of the economic outlook using historical forecasting errors: The Federal Reserve’s approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1564-1582.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:bofrdp:037 is not listed on IDEAS
    2. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    3. Ambrocio, Gene, 2017. "The real effects of overconfidence and fundamental uncertainty shocks," Research Discussion Papers 37/2017, Bank of Finland.
    4. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    5. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    6. repec:zbw:bofrdp:2017_037 is not listed on IDEAS
    7. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    8. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    9. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    10. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    11. Glas, Alexander, 2020. "Five dimensions of the uncertainty–disagreement linkage," International Journal of Forecasting, Elsevier, vol. 36(2), pages 607-627.
    12. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    13. Glas, Alexander & Hartmann, Matthias, 2016. "Inflation uncertainty, disagreement and monetary policy: Evidence from the ECB Survey of Professional Forecasters," Journal of Empirical Finance, Elsevier, vol. 39(PB), pages 215-228.
    14. Ozturk, Ezgi O. & Sheng, Xuguang Simon, 2018. "Measuring global and country-specific uncertainty," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 276-295.
    15. Liu, Yang & Sheng, Xuguang Simon, 2019. "The measurement and transmission of macroeconomic uncertainty: Evidence from the U.S. and BRIC countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 967-979.
    16. Hartmann, Matthias & Herwartz, Helmut & Ulm, Maren, 2017. "A comparative assessment of alternative ex ante measures of inflation uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 76-89.
    17. Ilhan Kilic & Faruk Balli, 2024. "Measuring economic country-specific uncertainty in Türkiye," Empirical Economics, Springer, vol. 67(4), pages 1649-1689, October.
    18. Wagner Piazza Gaglianone & João Victor Issler, 2014. "Microfounded Forecasting," Working Papers Series 372, Central Bank of Brazil, Research Department.
    19. Robert Rich & Joseph Tracy, 2021. "A Closer Look at the Behavior of Uncertainty and Disagreement: Micro Evidence from the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 233-253, February.
    20. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    21. Yongchen Zhao, 2022. "Uncertainty and disagreement of inflation expectations: Evidence from household‐level qualitative survey responses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 810-828, July.
    22. Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.

    More about this item

    Keywords

    forecast combination; forecast uncertainty; model averaging; panel data;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_5468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.